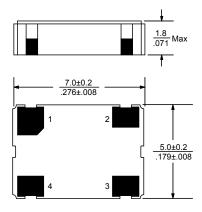


Actual Size $= 5 \times 7$ mm

Product Features

- Less than 1 ps RMS jitter with advanced non-PLL, patent-pending design
- 2.5V CMOS/TTL compatible logic levels
- Pin-compatible with standard 5x7mm packages
- Designed for standard reflow and washing techniques
- Pb-free and RoHS/Green compliant

Product Description


The \$1614XP Series is an enhanced high-frequency version of the popular \$1614 series, a 2.5V crystal clock oscillator that achieves superb jitter and stability over a broad range of operating conditions and frequencies. The output clock signal, generated internally with a non-PLL oscillator design, is compatible with LVCMOS/LVTTL logic levels. The device, available on tape and reel, is contained in a 5x7mm surface-mount ceramic package.

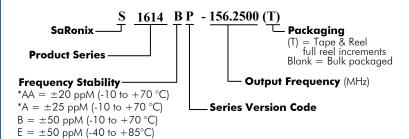
Applications

The \$1614XP Series is an ideal reference clock for highspeed applications requiring low jitter, including:

- 1/10 Gigabit Ethernet
- FibreChannel
- Serial Attached SCSI (SAS)
- Server & Storage platforms
- SONET/SDH linecards

Packaging Outline

Pin Functions


Pin	Function
1	OE Function
2	Ground
3	Clock Output
4	V_{DD}

Common Frequencies

Contact SaRonix for additional frequencies

100.0000 MHz	150.0000 MHz
106.2500 MHz	155.5200 MHz
125.0000 MHz	156.2500 MHz
127.0000 MHz	159.3750 MHz
133.0000 MHz	

Ordering Information

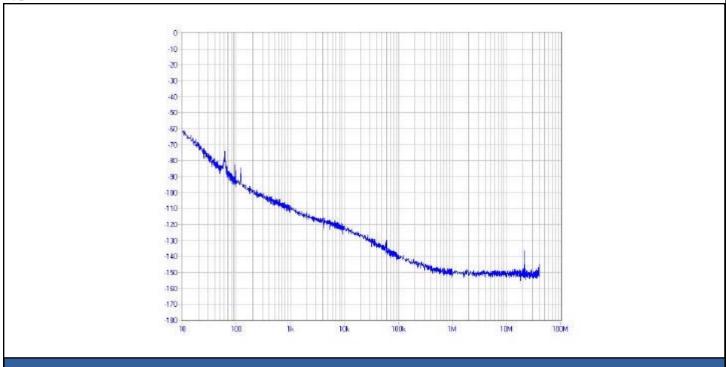
^{*} Availability varies by frequency. Please consult SaRonix.

Electrical Performance

Parameter	Min.	Тур.	Max.	Units	Notes
Output frequency	100		160	MHz	As specified
Supply voltage	+2.38	+2.5	+2.62	V	
Supply current			25	mA	Output enabled
Supply current			10	mA	Output Hi-Z
Frequency stability	±20		±100	ppM	See Note 1 below
Operating temperature	-40		+85	°C	As specified
Output logic 0, VOL			10% V _{DD}	V	
Output logic 1, VOH	90% V _{DD}			v	
Output load	15	15 pF (max) or 10 LSTTL		TL	
Duty cycle	45		55	%	-10 to +70°C measured 50%VDD
Duty cycle	40		60	%	-40 to +85°C measured 50%VDD
Rise and fall time			2	ns	measured 20/80% of waveform
Jitter, phase			1	ps RMS (1-σ)	10kHz to 20MHz frequency band
Jitter, accumulated			7	ps RMS (1-σ)	20,000 adjacent periods
Jitter, total			40	ps pk-pk	100,000 random periods
Subharmonic Level			-40	dBc	

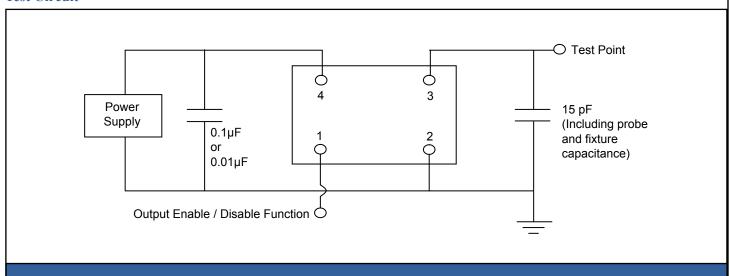
Notes:

Output Enable / Disable Function


Parameter	Min.	Тур.	Max.	Units	Notes
Input Voltage (pin 1), Output Enable	2.2			V	
Input voltage (pin 1), Output Disable			0.8	V	Output is Hi-Z
Internal pullup resistance	50			kΩ	
Output disable delay			100	ns	
Output enable delay			1	ms	

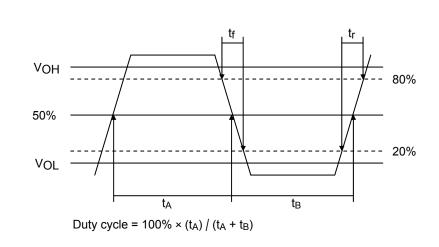
^{1.} As specified. Stability includes all combinations of operating temperature, load changes, rated input (supply) voltage changes, initial calibration tolerance (25°C), aging (1 year at 25°C average effective ambient temperature), shock and vibration.

Typical Phase Noise


Absolute Maximum Ratings

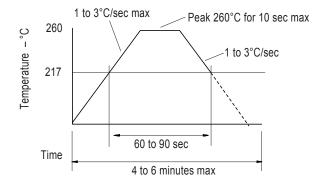
Parameter	Min.	Тур.	Max.	Units	Notes
Storage temperature	-55		+125	°C	

Test Circuit


Reliability Test Ratings

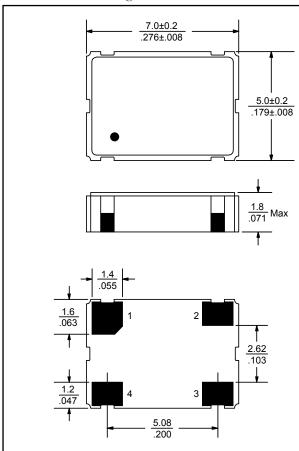
This product is rated to meet the following test conditions:

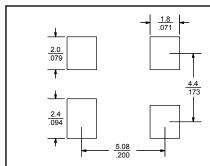
Туре	Parameter	Test Condition
Mechanical	Shock	MIL-STD-883, Method 2002, Condition B
Mechanical	Solderability	MIL-STD-883, Method 2003
Mechanical	Terminal strength	MIL-STD-883, Method 2004, Condition D
Mechanical	Gross leak	MIL-STD-883, Method 1014, Condition C
Mechanical	Fine leak	MIL-STD-883, Method 1014, Condition A2 ($R_1 = 2x10^{-8}$ atm cc/s)
Mechanical	Solvent resistance	MIL-STD-202, Method 215
Environmental	Thermal shock	MIL-STD-883, Method 1011, Condition A
Environmental	Moisture resistance	MIL-STD-883, Method 1004
Environmental	Vibration	MIL-STD-883, Method 2007, Condition A
Environmental	Resistance to soldering heat	MIL-STD-202, Method 210, Condition I or J



Output Waveform

Reflow Soldering Profile


As per IPC/JEDEC J-STD-020C

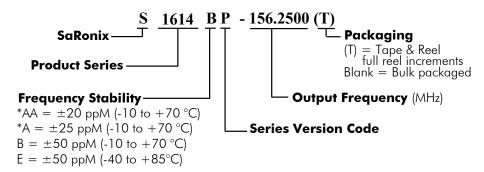

5

Mechanical Drawings

Recommended Land Pattern*

*External high-frequency power decoupling is recommended.(see test circuit for minimum recommendation). To ensure optimal performance, do not route traces beneath the package.

Scale: None. Dimensions are in mm/inches.


Marking LINE 1: S P X P (SaRonix, Model, Stability code, Version)

Marking LINE 2: Frequency (Frequency code)

Marking LINE 3: ● YY WW X (Pin 1, Year, Week, Origin)

**Exact location of markings may vary.

Ordering Information

^{*} Availability varies by frequency. Please consult SaRonix.