Features

Speech Circuit

- Adjustable DC Characteristic
- Symmetrical Input of Microphone Amplifier
- Receiving Amplifier for Dynamic or Piezo-electric Earpieces
- Automatic Line-loss Compensation

Dialer

- DTMF/Pulse Switchable
- Pulse Dialing 66/33 or 60/40 or DTMF Dialing Selectable by Pin
- Selectable Flashing Duration by Key Pad
- Pause Function
- Optical Indication of Temporary DTMF Mode
- Keytone for Pulse Dialing
- Last Number Redial up to 32 Digits
- Three by 17 Digits Direct (One-touch) Memory
- Ten by 17 Digits Indirect (Two-touch) Memory
- Notice Function up to 32 Digits
- Standard Low-cost Crystal 3.58 MHz or Ceramic Resonator
- Handset Mute (Privacy) with Optical Indication
- Additional Toggle Flipflop
- Internal Loop Interrupt Detection

Tone Ringer

- 2-tone Ringer
- Adjustable Volume
- RC Oscillator
- Adjustable Threshold

Benefits

- Low Number of External Components
- High Quality through One IC Solution

Electrostatic sensitive device.
Observe precautions for handling.

Description

Atmel's low-voltage telephone circuit U3761MB-T performs all the speech and line interface functions required in an electronic telephone set, a tone ringer, a pulse and DTMF dialing with redial, notice function, and 13 memories. Operation below 15 mA is possible with reduced performance.

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning SSO44

$\text { C1 } \lcm{1}$	U3761MB-T	44	R4
C2 2		43	R3
C3 3		42	R2
C4 4		41	R1
Earth 5		40	Mask
HFI 6		39	$\overline{D P}$
HFO 7		38	MODE
XT 8		37	KT
$\overline{\text { XT }} 9$		36	HKS
MFO 10		35	NC
MFIND 11		34	TEST
GND 12		33	VDD
MIC 13		32	OUT
MIC 214		31	RCK
MICO 15		30	VRING
VL 16		29	VRIAC
RDC 17		28	AGC
TIN 18		27	THA
VI 19		26	ST
MUTE 20		25	CLIM
$\overline{\text { PRIND }} 21$		24	RECO 1
RECIN 22		23	RECO 2

Pin Description

Pin Description

Pin	Symbol	Function	Configuration
8 9	$\begin{aligned} & \mathrm{XT} \\ & \overline{\mathrm{XT}} \end{aligned}$	A built-in inverter provides oscillation with an inexpensive $3.579545-\mathrm{MHz}$ crystal or ceramic resonator	
10	MFO		
11	$\overline{\text { MFIND }}$	During the temporary DTMF mode the output switches to low Reset by on hook condition Maximum voltage at $\overline{\text { MFIND }}=5.5 \mathrm{~V}$	
12	GND	Ground	
13 14	MIC 1 MIC 2	Inverting input of microphone amplifier Non-inverting input of microphone amplifier	

Pin Description

Pin	Symbol	Function	Configuration
15	MICO	Transmit pre-amp output which is normally capacitively coupled to Pin TIN	
16	VL	Positive supply voltage input to the device. The current through this pin is modulated by the transmit signal.	
17	RDC	An external resistor (1 W) is required from this pin to GND to control the DC input impedance of the circuit. It has a nominal value of 39Ω for low-voltage operation. Values up to 100Ω may be used to increase the available transmit output voltage swing at the expense of low-voltage operation.	
18	TIN	Input to the line output driver amplifier. Transmit AGC applied to this stage.	
19	V_{1}	This internal voltage bias line must be connected to VL via an external resistor which dominates the AC input impedance of the circuit and should be 680Ω for an $600-\Omega$ input impedance or $1.2 \mathrm{k} \Omega$ for a $900-\Omega$ input impedance.	

Pin Description

Pin	Symbol	Function	Configuration
20	MUTE	Pin for testing Forcing MUTE to GND mutes the microphone and decreases the earpiece signal by typically 29 dB ; no pull up circuit allowed	
21	$\overline{\text { PRIND }}$	PRIVACY indication pin Open collector with minimum 1 mA drive current to GND when PRIVACY = active	
22	RECIN	Receive amplifier input. The receiving amplification is regulated by an AGC.	
23 24	RECO2 RECO1	Output of the receive amplifier. Dynamic transducers with a minimum impedance of 100Ω can be directly driven by these outputs.	
25	CLIM	Time constant of anticlipping in transmit path. CLIM $\geq 2.2 \mu \mathrm{~F}$ CLIM = GND: anticlipping inactive	
26	ST	The output of the sidetone cancellation signal, which requires a balanced impedance of 8 to 10 times the subscriber's line impedance to be connected to pin VL	

Pin Description

Pin	Symbol	Function	Configuration
27	THA	Ringer threshold adjustment	
28	AGC	The range of transmit and receive gain variations between short and long loops may be adjusted by connecting a resistor $\mathrm{R}_{\text {AGC }}$ from this pin to (GND). This pin can be left open to set AGC out of action.	
29	VRIAC	Ringing supply	
30	VRING	DC supply voltage for the tone ringer is limited to 30 V with integrated Z-diode.	
31	RCK	RC clock oscillator for ringer	

Pin Description

Pin	Symbol	Function	Configuration
32	OUT	Buzzer output	
33	VDD	Supply output for dialer part	
34	Test	Test input with $6.25 \mathrm{k} \Omega$ pull-up resistor	
35	NC	Not connected	
36	HKS	Hook switch input HKS = 0: On-hook state. Chip in sleep mode, no operation (external pull-down resistor recommended) HKS = 1: Off-hook state. Chip enable for normal operation $\mathrm{I}_{\mathrm{HKS}} \leq 0.5 \mathrm{~mA}$	
37	KT	Keytone output signal which is sent out in pulse dialing mode with a keytone frequency of 582 Hz . KT sink/drive current is about $100 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	

Pin Description

Pin	Symbol	Function	Configuration
38	MODE	Pulling MODE pin to: C3: tone mode with 87 ms burst time and 140 ms pause C4: tone mode with 87 ms DTMF burst and 87 ms pause R1: pulse mode with 20 pps, Make/Break $=40 / 60$ R2: pulse mode with 20 pps, Make/Break $=33 / 66$ R3: pulse mode with 10 pps, Make/Break $=40 / 60$ R4: pulse mode with 10 pps, Make/Break $=33 / 66$ C1: pulse mode with 10 pps , Make/Break $=33 / 66$ and temp. DTMF with 87 ms DTMF burst, 140 ms pause MODE pin pulled to R4: with temporary DTMF, 87 ms DTMF burst and 87 ms pause	
39	$\overline{\mathrm{DP}}$	Pulse dialing output. Flash key will cause $\overline{\mathrm{DP}}$ to be active in either DTMF mode or pulse mode. In on-hook state is $\overline{\mathrm{DP}}=$ VDD	
40	Mask	Short mute during pulse dialing, active high During MASK an internal NPN transistor shortens VL against VI.	
41	R1		
42	R2		
43	R3		
44	R4	Keyboard input	

Keyboard Operation

C1	C2	C3	C4	
1	2	3	S	M1
4	5	6	\otimes	M2
7	8	9	A	M3
*/T	0	\#	R/P	N
F1	F2	F3	E	\perp

Normal Dialing

Redialing

OFF HOOK
D1
D2
Dn

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.
3. If redialing length oversteps 32 digits, the redialing function will be inhibited.

OFF HOOK , D1 , D2 , ..., Dn BUSY, Come ON HOOK ,OFF HOOK , R/P
The R/P key can execute the redial function only as the first key-in after off-hook; otherwise, it executes the pause function (3.6 s).
Keys stored in redial memory: 0 to 9, \#, R/P, A, M1, M2, M3, N, * (only tone mode)
Characters F1, F2, F3, Earth, (* in pulse mode) can only be stored in Mn, Ln and N memory.
Characters F1, F2, F3, Earth, (* in pulse mode) will not be dialled out from redial memory; dialling out was stopped, when recognizing one of the above characters.
Example:
OFF/ HOOK, D1, D2, F1, D4, D5, S, S, M1
a) ON/OFF-HOOK, R/P
only D1, D2 will be dialed out, then dialing out stops
b) ON/OFF-HOOK, M1
D1, D2, F1, D4, D5 will be dialed out

Content of redial memory can be copied to Mn, Ln, N; but copying memory Mn, Ln, N to itself or to another memory (except redial memory) will erase the destinated memory.

Example:
OFF/ HOOK, D1, D2, ... Dn
a) ON/OFF-HOOK, R/P, N.
D1, ... Dn copied to N
b) ON/OFF-HOOK, R/P, S, S, Mn (or Ln)
D1, ... Dn copied to Mn (or Ln)
but
OFF/ HOOK, M1
a) ON/OFF-HOOK, R/P, S, S, M2
b) ON/OFF-HOOK, M1, S, S, M2
content of M1 will be dialed out
not possible, M 2 will be erased
not possible, M2 will be erased

Number Store

Repertory Dialing

Notice (N)

Cascaded Dialing

OFF HOOK , D1 , D2 ,..., Dn , S , S , Mn (or Ln)

1. D1, D2, ..., Dn will be stored in memory location only (not in redial memory) and dialed out.

OFF HOOK S , D1 , D2 , .., Dn , S , Mn (or Ln)
2. D1, D2, ..., Dn will be stored in memory location but will not be dialed out.
3. R/P and */T keys can be stored as a digit in memory, also F1, F2, F3, Earth. In store mode, R/P is the pause function key; */T is the pulse-to-tone function key.
4. The store mode is released after the store function is executed or when the state of the hook switch is changed.
5. Number store can be linked without going ON/OFF-Hook

Example:
OFF/HOOK S, D1, D2, ... Dn, S, M1 storing D1, D2, ... Dn to M1
S, D1', D2', ... Dn', S, M2 ... storing D1', D2', ... Dn' to M2

1. OFF HOOK , Mn
2. OFF HOOK , A , Ln

OFF HOOK D1 , D2 , ..., Dn , N

1. If the dialing of $D 1$ to $D n$ is finished, pressing the N key will cause $D 1$ to $D n$ to be copied to the N memory.
2. Pressing key N again, after D1, D2, ... Dn was copied to N, N will be dialed out again
OFF HOOK , N
3. D1 to Dn will be dialed out after the N key is pressed.
4. Notice function is valid as first key only.
5. Normal dialing + Repertory dialing + Normal dialing
6. Repertory dialing + Normal dialing + Normal dialing
7. Redialing + Normal dialing + Repertory dialing
8. Redialing is valid as first key-in only.

Figure 3. Pulse Mode Normal Dialing

Figure 4. Pulse Mode Auto Dialing, $\mathrm{t}<\mathrm{t}_{\mathrm{OHD}}$

Figure 5. Pulse Mode Auto Dialing, $\mathrm{t}>\mathrm{t}_{\mathrm{OHD}}$

Figure 6. DTMF Mode Normal Dialing

Figure 7. DTMF Mode Auto Dialing ($\mathrm{t}<\mathrm{t}_{\mathrm{OHD}}$)

Figure 8. DTMF Mode Auto Dialing ($\mathrm{t}>\mathrm{t}_{\mathrm{OHD}}$)

Access Pause

1. The pause function can be stored in the memory.
2. The pause function is executed in normal dialing and redialing.

Figure 9. Pause Function

Pulse-to-tone (*/T)

OFF HOOK , D1 , D2 , ..., Dn , */T , D1' , D2' , ..., Dn'

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (3.6 s), D1', D2' ,..., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

D1, D2, ..., Dn, * , D1', D2', ..., Dn'
(Tone) (Tone) (Tone)
3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode by going on-hook only.
4. ON/OFF-HOOK, R/P D1, D2, Dn dialed out, then further dialing out stops and remains in pulse mode, when dialling from redial memory.
5. If characters are stored in Mn , Ln or N , dialing out will be the same in pulse mode as point 1.

Figure 10. Pulse-to-tone Operation

Flash
(F1 or F2 or F3)
OFF HOOK , Fn

1. The dialer will execute a flash break and the entire flash pause time will elapse before the next digits are dialed out.
2. The flash key can be stored as a digit in the memory. Only one flash, however, will be released to the users.
3. The system will return to the initial state after the flash pause time has elapsed.

Figure 11. Flash Operation
HKS \quad High

$t_{\text {KID }}=$ key active in debounce
$t_{\text {KRD }}=$ key release debounce
$t_{\text {PDP }}=$ pre-digit pause
$\mathrm{t}_{\mathrm{IDP}}=$ inter-digit pause
$\mathrm{t}_{\mathrm{TD}}=$ DTMF output duration
$\mathrm{t}_{\text {ITP }}=$ intertone pause
$\mathrm{t}_{\mathrm{FB}}=$ flash break time
$t_{\text {FP }}=$ flash pause time
$\mathrm{t}_{\mathrm{p}}=$ pause time
Figure 12. Symbolic Timing Diagram: Earth Function

Figure 13. Symbolic Timing Diagram: HFI, HFO Function

Figure 14. Symbolic Timing Diagram: On Hook Debounce Time

Figure 15. HKS Threshold Voltage

Absolute Maximum Ratings
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Line current	I_{L}	140	mA
DC line voltage	V_{L}	14	V
DC voltage at pins 1 to 11 and 33 to 44	$\mathrm{~V}_{\mathrm{DC}}$	5.5	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +75	-55 to +150
Storage temperature	$\mathrm{T}_{\text {stg }}$	0.9	${ }^{\circ} \mathrm{C}$
Total power dissipation, $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}, \mathrm{SSO} 44$	$\mathrm{P}_{\text {tot }}$	70	${ }^{\circ} \mathrm{C}$
Junction ambient, SSO44	$\mathrm{R}_{\text {thJA }}$	W	

Note: ESD withstand voltage 1 kV according to ESD standard S5.1 (HBM)

Electrical Characteristics: Speech Circuit

Reference point pin GND, $\mathrm{f}=1000 \mathrm{~Hz}, 0 \mathrm{dBm}=775 \mathrm{mV} \mathrm{rms}, \mathrm{R}_{\mathrm{DC}}=39 \Omega / 1 \mathrm{~W}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified, refer to "Basic Test Circuit". CLIM = GND

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Line voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$	V_{L}	$\begin{aligned} & 3.6 \\ & 5.9 \\ & 6.9 \\ & \hline \end{aligned}$	$\begin{gathered} 1.4 \\ 3.85 \\ 6.55 \end{gathered}$	$\begin{aligned} & 4.1 \\ & 7.2 \\ & 8.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Transmit and Sidetone						
Input resistance	R_{i}	R_{i}	45	80	120	$\mathrm{k} \Omega$
Gain	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5$ = open	$\mathrm{G}_{\text {s }}$	46.8	47.8	48.8	dB
Gain change with current	$\mathrm{I}_{\mathrm{L}}=20$ to $60 \mathrm{~mA}, \mathrm{R}_{\text {AGC }}=$ infinite	$\Delta \mathrm{G}_{\mathrm{S}}$	-0.5		0.5	dB
Gain deviation	$\mathrm{T}_{\text {amb }}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$	$\Delta \mathrm{G}_{\mathrm{S}}$	-0.5		0.5	dB
Line-loss compensation	$\mathrm{R}_{\text {AGC }}=12 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}$	$\Delta \mathrm{G}_{\text {s }}$	-7	-6	-4.8	dB
Distortion at line $\mathrm{V}_{\mathrm{L}}=0.775 \mathrm{~V}_{\text {rms }}$	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5=$ open	d_{t}			2	\%
Maximum output voltage at line $\mathrm{d} \leq 5 \%$	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {mic }}=10 \mathrm{mV}, \\ & \mathrm{CLIM}=2.2 \mu \mathrm{~F}, \mathrm{~S}_{1}=\text { open } \end{aligned}$	$\mathrm{V}_{\text {Lmax }}$		1.2		dBm
Attack time transmit anticlipping	CLIM $=2.2 \mu \mathrm{~F}$	$\mathrm{t}_{\text {att }}$		3.5		ms
Noise at line weighted psophometrically	$\mathrm{I}_{\mathrm{L}}>20 \mathrm{~mA}, \mathrm{G}_{\mathrm{S}}=48 \mathrm{~dB}$	n_{0}			-72	dBmp
Sidetone reduction	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	$\mathrm{G}_{\text {STA }}$	10	15	20	dB
DTMF Amplifier						
Volume range d < 5\%	Single tone, $\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	V_{L}	1.3			dBm
DTMF output level low frequency group	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5=\text { closed } \\ & \mathrm{T}_{\text {amb }}=-5^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	V_{L}	-7.6		-4.6	dBm
Pre-emphasis between high- and low-level frequency group	$\begin{aligned} & \mathrm{P}_{\mathrm{PRE}}=\mathrm{P}_{\mathrm{HLG}}-\mathrm{P}_{\mathrm{LLG}}, \mathrm{~S} 5=\text { closed }, \\ & \mathrm{T}_{\mathrm{amb}}=-5^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{P}_{\text {PRE }}$	1.9	2.5	3.1	dB
Total harmonic distortion relative to sum level of low and high frequency group signal	$\mathrm{IL} \geq 20 \mathrm{~mA}$, measured at pin MFO	THD		-33	-25	dBr

Electrical Characteristics: Speech Circuit (Continued)

Reference point pin GND, $f=1000 \mathrm{~Hz}, 0 \mathrm{dBm}=775 \mathrm{mV}_{\mathrm{rms}}, \mathrm{R}_{\mathrm{DC}}=39 \Omega / 1 \mathrm{~W}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified, refer to "Basic Test Circuit". CLIM = GND

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Receiving Amplifier						
Gain	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	G_{R}	3		5	dB
Gain change with current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \text { to } 60 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{AGC}}=\text { infinite } \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{R}}$	-0.5		0.5	dB
Gain deviation	$\begin{aligned} & \mathrm{T}_{\text {amb }}=-10 \text { to }+60^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{R}}$	-0.3		0.7	dB
Line-loss compensation	$\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}$	DG ${ }_{\text {R }}$	-7	-6	-4.7	dB
Receiving noise at earphone weighted psophometrially	$\mathrm{L}_{\mathrm{L}}=73 \mathrm{~mA}$	n_{i}		-77.5	-71	dBm
Gain change when muted	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	G_{RM}	24	29	34	dB
Output voltage push-pull	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}, \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}, 100 \Omega \text { in } \\ & \text { series, } \mathrm{d} \leq 2 \% \end{aligned}$	$\mathrm{V}_{\text {RECO }}$	0.8	0.9		$\mathrm{V}_{\mathrm{rms}}$
Ear protection differential	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}, \mathrm{~V}_{\text {gen }}=4 \mathrm{~V}_{\mathrm{rms}}, \mathrm{Z}_{\text {ear }}= \\ & 68 \mathrm{nF}+100 \Omega \end{aligned}$	$\mathrm{V}_{\text {ear }}$	1.3	1.6	2.5	$\mathrm{V}_{\mathrm{rms}}$
Supply Voltage (For Internal Use Only)						
Output voltage Note: Output must be limited externally to 5.5 V maximum	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$ dialing mode	$V_{\text {DD }}$	2.0		6.3	V
Available current for peripherals	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$ dialing mode	I_{DD}	150			$\mu \mathrm{A}$
Transmit						
Maximum output voltage swing at line	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{MIC}}=50 \mathrm{mV} \mathrm{rms}$	$\mathrm{V}_{\mathrm{L} \text { max }}$		3.4	4	Vpp
Mute suppression transmit with privacy function	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$	$\mathrm{G}_{\text {SPRIV }}$	60			dB

DC Characteristics Dialer

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$, all outputs unloaded, S9 closed; $\mathrm{HKS}=1$

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.
Memory retention current	$\mathrm{HKS}=0, \mathrm{~V}_{\mathrm{DD}}=1.0 \mathrm{~V}$	I_{MR}			0.1
Data retention voltage				0.5	
DTMF distortion	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	d		-30	-23
DP output sink current	$\mathrm{V}_{\mathrm{PO}}=0.5 \mathrm{~V}$	I_{PL}	0.5		dB
Keyboard input drive current	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	I_{KD}		20	
Keyboard input sink current	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	I_{KS}		500	mA
Key on resistance		$\mathrm{R}_{\mathrm{KON}}$		$\mu \mathrm{A}$	
Key off resistance		$\mathrm{R}_{\mathrm{KOFF}}$	100		$\mu \mathrm{~A}$
Mask sink/drive current	$\mathrm{I}_{\mathrm{M}} \mathrm{H} / \mathrm{L}$	0.5		5	$\mathrm{k} \Omega$
Earth sink/drive current	$\mathrm{I}_{\mathrm{e}} \mathrm{H} / \mathrm{L}$	0.5		$\mathrm{k} \Omega$	

DC Characteristics Dialer (Continued)
$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$, all outputs unloaded, S9 closed; HKS = 1

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Isolation resistance XT/XT		Riso	4.7			$\mathrm{M} \Omega$
Maximum voltage at HKS					5.5	V
Maximum input current at HKS					0.5	mA

AC Characteristics Dialer

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$, all outputs unloaded, S9 closed; HKS = 1

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Keypad active in debounce mode		$\mathrm{t}_{\text {KID }}$	15	20	25	ms
Key release debounce		$\mathrm{t}_{\text {KRD }}$	15	20	25	ms
Pre-digit pause	$\begin{aligned} & \text { MODE pin }=\text { R3 }(10 \mathrm{pps}) \\ & \text { MODE pin }=\mathrm{C} 1, \mathrm{C} 4(10 \mathrm{pps}) \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{PDP}} \\ & \mathrm{t}_{\mathrm{PDP}} \end{aligned}$	$\begin{aligned} & 37 \\ & 31 \end{aligned}$	$\begin{gathered} \hline 40 \\ 33.3 \end{gathered}$	$\begin{gathered} \hline 41 \\ 33.5 \end{gathered}$	ms ms
	$\begin{aligned} & \text { MODE pin = R1 (20 pps) } \\ & \text { MODE pin = R2 } \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{PDP}} \\ & \mathrm{t}_{\mathrm{PDP}} \end{aligned}$		$\begin{gathered} 20 \\ 16.65 \end{gathered}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Inter-digit pause (auto dialing)	$\begin{aligned} & 10 \mathrm{pps}, \mathrm{t}_{\mathrm{IP}}=\mathrm{t}_{\mathrm{IDP}}+\mathrm{t}_{\mathrm{PDP}} \\ & 20 \mathrm{pps} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{IP}} \\ & \mathrm{t}_{\mathrm{IP}} \end{aligned}$	810	$\begin{aligned} & 836 \\ & 512 \\ & \hline \end{aligned}$	860	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Make/break ratio	```MODE pin = R1 (20 pps), R3 10 pps) MODE pin = C1, R4 (10 pps) R2 (20 pps)```	M/B	$\begin{aligned} & 40.8: 60.2 \\ & 35.6: 64.4 \end{aligned}$	$\begin{aligned} & 40: 60 \\ & 33: 67 \end{aligned}$	$\begin{aligned} & 39.2: 60.8 \\ & 31.2: 68.8 \end{aligned}$	$\%$ \%
DTMF output duration	Auto dialing, $\mathrm{MODE}=\mathrm{C} 4$ MODE = C3	$\mathrm{t}_{\text {TD }}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	ms
Inter-tone pause	$\begin{aligned} & \text { Auto dialing, } \mathrm{MODE}=\mathrm{C} 4 \\ & \mathrm{MODE}=\mathrm{C} 3 \end{aligned}$	$\mathrm{t}_{\text {ITP }}$	$\begin{gathered} 84 \\ 135 \end{gathered}$	$\begin{gathered} 87 \\ 140 \end{gathered}$	$\begin{gathered} 90 \\ 147 \end{gathered}$	ms
Flash break time F1 F2 F3	C_{1} connected to GND C_{2} connected to GND C_{3} connected to GND	$\mathrm{t}_{\text {FB }}$	$\begin{gathered} 95 \\ 245 \\ 590 \end{gathered}$	$\begin{gathered} 98 \\ 250 \\ 604 \end{gathered}$	$\begin{aligned} & 101 \\ & 255 \\ & 610 \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \end{aligned}$
Rise time of leading edge at HKS	20 to 70\% of VDD	$\mathrm{t}_{\mathrm{rHKS}}$			10	ms
Flash pause time	F1, F2, F3	t_{FP}	0.9	1	1.1	s
Pause time		t_{P}	3.5	3.6	3.7	s
On-hook debounce time		$\mathrm{t}_{\text {ohd }}$	145	165	185	ms
Earth time	C_{4} connected to GND	t_{et}		604		ms
Earth pause time		t_{pt}	0.9	1	1.1	s
Break duration	$\begin{aligned} & \text { MODE pin = R3 } \\ & \text { MODE pin = C1, R4 } \end{aligned}$	t_{B}	$\begin{gathered} 57.6 \\ 63 \end{gathered}$	$\begin{gathered} \hline 60 \\ 66.7 \end{gathered}$	$\begin{gathered} 62.4 \\ 69 \end{gathered}$	ms ms
	$\begin{aligned} & \text { MODE pin = R1 (20 pps) } \\ & \text { MODE pin = R2 } \end{aligned}$	t_{B}		$\begin{gathered} 30 \\ 33.35 \end{gathered}$		ms ms
Make duration	$\begin{aligned} & \text { MODE pin }=\text { R3 } \\ & \text { MODE pin }=\text { C1, R4 } \\ & \hline \end{aligned}$	t_{M}	$\begin{aligned} & 38 \\ & 31 \end{aligned}$	$\begin{gathered} \hline 40 \\ 33.3 \\ \hline \end{gathered}$	$\begin{aligned} & 41 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
	$\begin{aligned} & \text { MODE pin = R1 (20 pps) } \\ & \text { MODE pin = R2 } \end{aligned}$	t_{m}		$\begin{gathered} 20 \\ 16.65 \end{gathered}$		ms ms
Break + make duration	MODE pin = C1, R3, R4	t_{P}	95	100	105	ms
	MODE pin = R1, R2 (20 pps)	t_{P}		50		ms

Electrical Characteristics Tone Ringer

$\mathrm{f}_{\mathrm{RCK}}=4 \mathrm{kHz}, \mathrm{V}_{\mathrm{RING}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point GND, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Supply current, outputs open	$\mathrm{V}_{\text {RIAC }}=20 \mathrm{~V}$	$\mathrm{I}_{\mathrm{RING}}$	2.1		3.8	mA
Switch-on threshold	$\mathrm{V}_{\text {RIAC }}, \mathrm{THA}=$ open	$\mathrm{V}_{\mathrm{RON}}$	8	9	10	V
Switch-off threshold	$\mathrm{V}_{\text {RIAC }}$	$\mathrm{V}_{\text {ROFF }}$	5.0	5.6	6.5	V
Ringing frequency	$\mathrm{R}=150 \mathrm{k} \Omega, \mathrm{C}=1 \mathrm{nF}$	$\mathrm{f}_{1 \mathrm{H}}$	937	1010	1083	Hz
	$\mathrm{~V}_{\mathrm{RIAC}}>\mathrm{V}_{\mathrm{RON}}$	$\mathrm{f}_{1 \mathrm{~L}}$	752	808	868	Hz
Range of external components for R/C oscillator		C	1000		2200	pF
Audio sequence frequency		R	50		330	$\mathrm{k} \Omega$
Output voltage swing		f_{2}	11.5	12.5	14.0	Hz
Turn-off delay	$\mathrm{V}_{\text {Ring }}=25 \mathrm{~V}, \mathrm{C}_{\text {out }}=68 \mathrm{nF}$	$\mathrm{V}_{\text {out }}$	21	23		$\mathrm{~V}_{\mathrm{pp}}$

Note: Max. current into internal zener diode at pin VRING $=20 \mathrm{~mA}$
Figure 16. Turn-off Delay Time

Note

The oscillator frequency is defined by R and C at pin RCK.
$\mathrm{f}_{\mathrm{Osc}} \approx \frac{1}{1.594 \times \mathrm{C} \times[\mathrm{R}+3809 \Omega]}$
The audio sequence frequency f_{2} and the ratio of low frequency $f_{1 L}$ and high frequency $f_{1 H}$ are derived from the oscillator by internal deviders. So $f_{2}, f_{1 H}$ and $f_{1 L}$ are given by:
$\mathrm{f}_{2}=\frac{\mathrm{f}_{\mathrm{Osc}}}{320} ; \mathrm{f}_{1 \mathrm{H}}=\frac{\mathrm{f}_{\mathrm{Osc}}}{4} ; \mathrm{f}_{1 \mathrm{~L}}=\frac{\mathrm{f}_{\mathrm{Osc}}}{5}$
For more information on adjusting ringer melody refer to the document "Application and Adjustment Hints".

Figure 17. Basic Test Circuit

Equations for Electrical Characteristic Parameters of the Speech Circuit

The equations refer to the basic test circuit. If not otherwise specified, the switches in the basic test circuit are inactive.

Transmit Gain

$G S=20 \times \log \left(\frac{V_{L}}{V_{\text {MIC }}}\right)$
$\mathrm{V}_{\text {MIC }}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Line-loss Compensation Transmit

$\Delta \mathrm{GS}=\mathrm{GS}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}\right)-\mathrm{GS}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}\right)$
TX-mode: $\mathrm{V}_{\mathrm{MIC}}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Line-loss Compensation Receive

$\Delta G R=G R\left(\right.$ at $\left.I_{L}=73 \mathrm{~mA}\right)-G R\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}\right)$
$R X$-mode: $V_{\text {gen }}=300 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 7 \mathrm{~b}$

Receiving Gain

$G R=20 \times \log \left(\frac{V_{\text {RECO }}}{V_{L}}\right)$
$R X$-mode: $\mathrm{V}_{\text {gen }}=300 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 7 \mathrm{~b}$

Sidetone Reduction

$G S T A=20 \times \log \left(\frac{V_{L}}{V_{\text {RECO }}}\right)$ (in TX-mode) $+G R$
TX-mode: $\mathrm{V}_{\mathrm{MIC}}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Input Impedance of Microphone Amplifier
$\mathrm{Ri}=\frac{50 \mathrm{k}}{\left(\frac{\mathrm{V}_{\mathrm{L}(\mathrm{S} 6=\text { closed })}}{\mathrm{V}_{\mathrm{L}(\mathrm{S} 6=\text { open })}}-1\right)}$
TX-mode: VMIC $=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Gain Change when Muted

$G R M=20 \times \log \left(\frac{V_{\text {RECO }}}{V_{L}}\right) \quad($ Mute $=$ inactive $)-20 \times \log \left(\frac{V_{\text {RECO }}}{V_{L}}\right) \quad$ (Mute $=$ active $)$
$\mathrm{V}_{\text {gen }}=100 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open, $\mathrm{S} 8=$ open

Total Harmonic Distortion (THD)
$\mathrm{THD}=20 \times \log \left(\frac{\sqrt{n_{1} \times U_{\mathrm{LG}}{ }^{2}+n_{1} \times U_{\mathrm{HG}^{2}}{ }^{2}+\mathrm{n}_{2} \times \mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{n}_{2} \times \mathrm{U}_{\mathrm{HG}}{ }^{2}+\ldots \mathrm{n}_{\mathrm{n}} \times \mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{n}_{\mathrm{n}} \times \mathrm{U}_{\mathrm{HG}}{ }^{2}}}{\sqrt{\mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{U}_{\mathrm{HG}}{ }^{2}}}\right)$
$n_{1}, \ldots n_{n}=$ harmonics of high and low frequency group

Ordering Information

Extended Type Number	Package	Remarks
U3761MB-TFN	SSO44	Tube
U3761MB-TFNG3	SSO44	Taped and reeled

Package Information

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.

