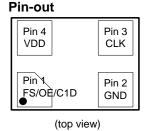


Description

The Si501/2/3/4 CMEMS programmable oscillator series combines standard CMOS + MEMS in a single, monolithic IC to provide high-quality and high-reliability oscillators. Each device is specified for guaranteed performance across voltage, process, temperature, shock, vibration and aging for 10 years. More information on CMEMS available at www.silabs.com/cmems.

Applications: General purpose microcontrollers, industrial control, IP cameras, surveillance systems, metering, home and office automation, security systems, sleep clocking, 10/100 Ethernet/EtherCAT, SPI, SAS3.0 / SATA3.0, PCle ref clock, NVMe, HDD, SSD, hybrid storage, DDR3/3L, USB2.0, USB OTG/2.0, M2M, HDMI

Not recommended: Wi-Fi, Bluetooth, USB 3.0, Gigabit Ethernet


Features

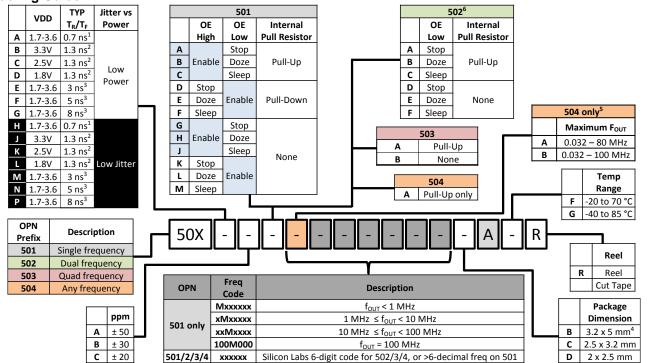
- Any frequency oscillator from 32 kHz to 100 MHz
 - Contact Silicon Labs Marketing for frequencies above 100 MHz
- Frequency stability: ±20/±30/±50 ppm including 10-year aging
- -20 to +70 °C: Extended Commercial
- -40 to +85 °C: Industrial
- Highly configurable: low power vs. low jitter, frequency, F_{STAB}, T_R/T_F, V_{DD}, OE/FS functionality (see ordering guide below)
- In-circuit programmable via C1D 1-pin interface (Si504)

Pin Description

- Seamless V_{DD} from +1.71 to +3.63 V
- Low period jitter mode / low power mode
- · Glitchless start and stop
- · RoHS compliant, Pb-free

Product Selector Guide				
Part Number	Description	Control		
Si501	Single frequency	OE		
Si502	Dual frequency	FS/OE		
Si503	Quad frequency	FS		
Si504	Programmable for any supported frequency or configuration	C1D 1-pin interface (see Si504 data sheet for details)		

 Pin Number
 Description


 1
 FS = Frequency Select OE = Output Enable C1D = Single wire interface

 2
 GND = Ground

 3
 CLK = Clock out

 4
 VDD = Power Supply

Ordering Guide

Ordering Guide Notes:

- Series termination resistor (R_S see Apps Circuits section) is recommended for this configuration.
- 2. Series termination resistor (R_s) is not needed for this configuration. Output impedance is 50Ω for the indicated supply condition.
- 3. Series termination resistor (R_s) is not needed for this configuration. Reduced EMI setting.
- 4. 3.2 x 5 mm package is delivered as 3.2 x 4 mm and accommodates the industry-standard 3.2 x 5 mm footprint.
- 5. Select option to support maximum anticipated frequency needed.

6. The Si502 OE pin has three (3) states: OE High = Freq 1; OE Weak High = Freq 2; OE Low is configurable.

Selected Electrical Specifications

 V_{DD} = +1.71 V to +3.63 V, T_A = -40 to 85 °C unless stated otherwise

Symbol	Test Condition/Comment	Min	Тур	Max	Unit
F _{CLK}	Programmable family range	0.032	_	100	MHz
V_{DD}	Supports continuous V _{DD} from Min to Max	1.71	_	3.63	V
1	3.3 V _{DD} , F _{CLK} = 1 MHz, 4 pF, Low Power mode	_	1.7	2.5	mA
I _{DD1}	3.3 V _{DD} , F _{CLK} = 1 MHz, 4 pF, Low Jitter mode	_	3.9	4.9	mA
	Stop mode, F _{CLK} = 1 MHz, Low Power mode	_	1.7	2.5	mA
	Stop mode, F _{CLK} = 1 MHz, Low Jitter mode	_	3.9	4.9	mA
I _{DD2}	Doze mode	_	670	890	μΑ
	Sleep mode	_	0.3	1	μА
		-20	_	+20	ppm
F _{STAB}	$TA = -20 ^{\circ}C$ to +70 $^{\circ}C$, -40 $^{\circ}C$ to +85 $^{\circ}C$	-30	_	+30	ppm
		-50	_	+50	ppm
	1^{st} option code = A^4 or H^4	0.4	0.7	1.2	ns
T _R /T _F	1 st option code = B, C, D, J, K, L	1	1.3	1.6	ns
	1 st option code = E, M	2	3	4	ns
	1 st option code = F, N	4	5	7	ns
	1 st option code = G, P	7	8	11	ns
J _{CCPP}	F _{CLK} = 100 MHz, Low Jitter mode 1 st option code = H	_	14	25	ps pk-pk
J _{PPKPK}	F _{CLK} = 100 MHz, Low Jitter mode 1 st option code = H	_	9	13	ps pk-pk
J _{PRMS}	F _{CLK} = 100 MHz, Low Jitter mode 1 st option code = H	_	1	1.6	ps rms
ф	F _{CLK} = 75 MHz, F _{OFFSET} = 900 kHz - 7.5 MHz Low Jitter mode, 1 st option code = H	_	1	1.3	ps rms
DC	Drive strength selected such that T_R/T_F (20% to 80%) < 10 % of period	45	50	55	%
V _{IH}	·	0.7 x V _{DD}	_	_	V
V _{IL}		_	_	$0.3 \times V_{DD}$	V
		0.9 x V _{DD}	_	_	V
V _{OL}		_	_	0.1 x V _{DD}	V
	FCLK VDD IDD1 IDD2 FSTAB TR/TF JCCPP JPPKPK JPRMS	$ F_{\text{CLK}} \qquad \text{Programmable family range} \\ V_{\text{DD}} \qquad \text{Supports continuous V}_{\text{DD}} \text{ from Min to Max} \\ I_{\text{DD1}} \qquad 3.3 \ V_{\text{DD}}, \ F_{\text{CLK}} = 1 \ \text{MHz}, \ 4 \ \text{pF}, \ \text{Low Power mode} \\ 3.3 \ V_{\text{DD}}, \ F_{\text{CLK}} = 1 \ \text{MHz}, \ 4 \ \text{pF}, \ \text{Low Jitter mode} \\ \text{Stop mode}, \ F_{\text{CLK}} = 1 \ \text{MHz}, \ \text{Low Power mode} \\ \text{Stop mode}, \ F_{\text{CLK}} = 1 \ \text{MHz}, \ \text{Low Jitter mode} \\ \text{Doze mode} \\ \text{Sleep mode} \\ \\ F_{\text{STAB}} \qquad TA = -20 \ ^{\circ}\text{C} \ \text{to} +70 \ ^{\circ}\text{C}, \ -40 \ ^{\circ}\text{C} \ \text{to} +85 \ ^{\circ}\text{C} \\ \\ T_{\text{R}}/T_{\text{F}} \qquad 1^{\text{st}} \ \text{option code} = A^{4} \ \text{or H}^{4} \\ 1^{\text{st}} \ \text{option code} = B, \ C, \ D, \ J, \ K, \ L \\ T_{\text{R}}/T_{\text{F}} \qquad 1^{\text{st}} \ \text{option code} = B, \ C, \ D, \ J, \ K, \ L \\ 1^{\text{st}} \ \text{option code} = B, \ C, \ D, \ J, \ K, \ L \\ 1^{\text{st}} \ \text{option code} = E, \ M \\ 1^{\text{st}} \ \text{option code} = E, \ M \\ 1^{\text{st}} \ \text{option code} = G, \ P \\ \\ J_{\text{CCPP}} \qquad F_{\text{CLK}} = 100 \ \text{MHz}, \ \text{Low Jitter mode} \\ 1^{\text{st}} \ \text{option code} = H \\ \\ J_{\text{PRMS}} \qquad F_{\text{CLK}} = 100 \ \text{MHz}, \ \text{Low Jitter mode} \\ 1^{\text{st}} \ \text{option code} = H \\ \\ \phi \qquad F_{\text{CLK}} = 100 \ \text{MHz}, \ \text{Low Jitter mode} \\ 1^{\text{st}} \ \text{option code} = H \\ \\ \phi \qquad F_{\text{CLK}} = 75 \ \text{MHz}, \ F_{\text{OFFSET}} = 900 \ \text{kHz} - 7.5 \ \text{MHz} \\ \text{Low Jitter mode}, \ 1^{\text{st}} \ \text{option code} = H \\ \\ D \ \text{Drive strength selected such that } T_{\text{R}}/T_{\text{F}} \\ (20\% \ \text{to} \ 80\%) < 10 \% \ \text{of period} \\ \\ V_{\text{IL}} \qquad V_{\text{OH}} \\ \\ \end{tabular}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F _{CLK}

- Si501 supports OE/mode functionality. Si502 supports OE/mode and FS functionality. Si503 supports only FS functionality. See data sheet functional description section for more information.
- Frequency stability includes initial tolerance, solder shift, operating temp range, rated power supply voltage change, load change, 10-year aging, shock, and vibration.
- $C_L = 15 \text{ pF}$, T_R/T_F (20% to 80%), 3.3 V unless otherwise stated. See datasheet for additional T_R/T_F options.
- Recommended series termination resistor (R_S) = 24.9 Ω for Z₀=50 Ω .
- Integrated phase jitter exceeds some high-performance data communications system requirements. See AN783 for more information.

Absolute Maximum Ratings¹

Symbol	Condition	Rating	Unit
Ts		-55 to 125	°C
V_{DD}		-0.5 to 3.8	°C
V_{IN}		$0.5 \text{ to V}_{DD} + 0.3$	V
HBM		2000	V
CDM		500	V
T _{PEAK}		260	°C
T _P		20-40	S
TJ		125	°C
	T _S V _{DD} V _{IN} HBM CDM T _{PEAK}	T _S V _{DD} V _{IN} HBM CDM T _{PEAK}	T _S -55 to 125 V _{DD} -0.5 to 3.8 V _{IN} 0.5 to V _{DD} +0.3 HBM 2000 CDM 500 T _{PEAK} 260 T _P 20-40

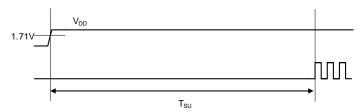
1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. The device is compliant with JEDEC J-STD-020.

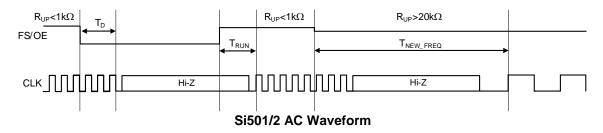
Environmental Compliance and Package Information

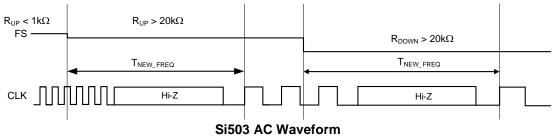
-	
Parameter	Test Condition
Mechanical Shock	MIL-STD-883, M2002 Cond B. (1,500g)
Mechanical Shock High g	MIL-STD-883, M2002, Cond. E (10,000g)
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Temperature Cycle	JESD22, Method A104
Resistance to Solder Heat	MIL-STD-883, Method 2036
Contact Pads	Gold over Nickel/Palladium

Thermal Conditions


Parameter	Symbol	Test Condition	Value	Unit
Thermal		3.2 x 5 mm, still air	187	
	Θ_{JA}	2.5 x 3.2 mm, still air	239	°C/W
Impedance	2 x 2.5 mm, still air	241		

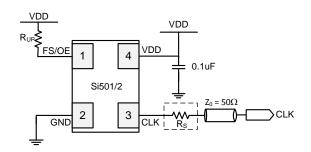
Clock Timing Characteristics V_{DD} = +1.71 V to +3.63 V, T_A = -40 to 85 °C unless stated otherwise.

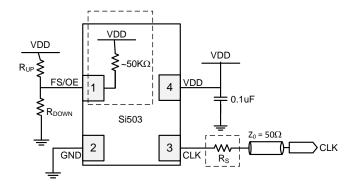

Parameter	Symbol	Test Condition/Comment	Min	Тур	Max	Unit	
Startup Time ¹	T _{SU} From V _{DD} crossing 1.71 to first clock		_	2.5	4	ms	
		From Stop mode	_	_	1.5 x T _{CLK} + 35	ns	
Resume Time ^{2, 3}	T_{RUN}	From Sleep mode	_	2.5	5	ms	
		From Doze mode	_	_	2.55		
Output Disable Time 2,3	T _D	To Stop	_	_	1.5 x T _{CLK} + 35	ns	
		To Sleep/Doze	_	_	225	μS	
Frequency Update Time ²	T _{NEW_FREQ}	_FREQ To New Frequency		_	5	ms	


- Hold FS/OE high (strong or weak) during powerup for fastest time to clock.
- Si501 and Si502 only. Si503 has frequency select (FS) only and does not support Stop, Doze or Sleep.
- T_{CLK} = clock period = 1/ F_{CLK} .

AC Waveforms

Si501/2/3 Power On Time





Revision 0.72 3

Applications Circuits

Si501/2 Apps Circuit w/ Optional Series Resistor

Si503 Apps Circuit w/ Configurable Options

- Notes:
 - Dotted line boxes show optional components depending on configuration options. See data sheet for additional information and for applications using a microcontroller. Data sheet is available at www.silabs.com/cmems.
 - Recommended series termination resistor (R_S) = 24.9 Ω for Z₀ = 50 Ω .

Hi-Z

Si502 FS/OE States and Resistor Values

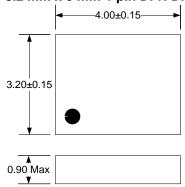
FS/OE State	R _{UP}	Clock Output
Strong High	$0 \Omega \le R_{UP} \le 1 k\Omega$	Frequency 1
Weak High	20 kO < P < 200 kO	Frequency 2

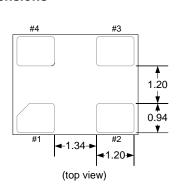
Si503 FS States and Resistor Values

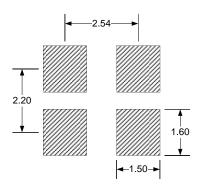
FS/OE State	R_{UP}	R _{DOWN}	Clock Output
Strong High	$0 \Omega \le R_{UP} \le 1 k\Omega$	No pop	Frequency 1
Weak High	$20 \text{ k}\Omega \le R_{\text{UP}} \le 200 \text{ k}\Omega$	No pop	Frequency 2
Weak Low	No pop	$20 \text{ k}\Omega \le R_{DOWN} \le 200 \text{ k}\Omega$	Frequency 3
Low	No pop	$0 \Omega \le R_{DOWN} \le 1 k\Omega$	Frequency 4

Notes for both FS/OE tables above:

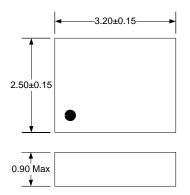
Low

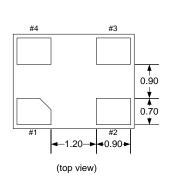

- If the internal pull-up resistor order option is NOT selected, an MCU internal pull-up resistor or an external pull-up resistor should be used. See data sheet for more information.
- The parallel combination of all pull-up resistors on the FS/OE pin including the optional internal pull-up resistor must be > 20 k Ω to select Weak High.
- If the Si50x internal pull-up resistor is enabled with no other external OE connections, the OE state will be detected as "Weak High", selecting Frequency 2 by default.

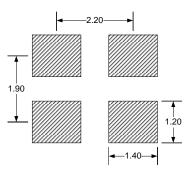



Package Dimensions and Landing Patterns

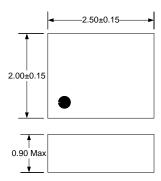
3.2 mm x 5 mm 4-pin DFN Dimensions

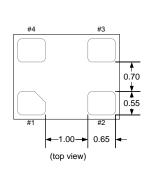



3.2 mm x 5 mm 4-pin DFN Landing Pattern

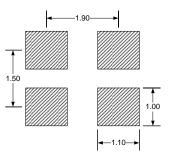

Note: The 3.2 x 5 mm package is delivered as a 3.2 x 4 mm package and is drop-in compatible to industry-standard 3.2 x 5 landing patterns.

2.5 mm x 3.2 mm 4-pin DFN Dimensions



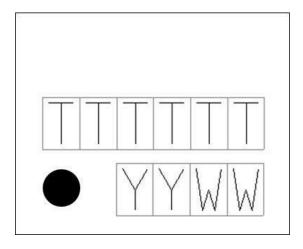


2.5 mm x 3.2 mm 4-pin DFN Landing Pattern

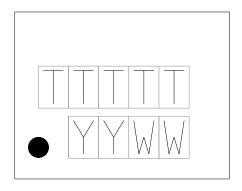


2 mm x 2.5 mm 4-pin DFN Dimensions

2 mm x 2.5 mm 4-pin DFN Landing Pattern

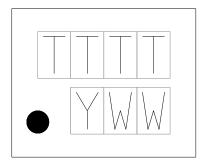


Package Top Marks and Explanations


3.2 mm x 5 mm Top Mark

3.2 mm x 5 mm Top Mark Explanation

Mark Method:	Laser	
Font:	0.66 mm Right-Justified	
Line 1 Marking:	TTTTTT=Trace Code	Manufacturing Code from the Assembly Purchase Order form.
Line 2 Marking:	Circle=0.5mm diameter Left-Justified	Pin 1 Indicator
	YY = Year WW = Work Week	Assigned by the Assembly House. Corresponds to the year and work week of the build date.


2.5 mm x 3.2 mm Top Mark

2.5 mm x 3.2 mm Top Mark Explanation

Mark Method:	Laser	
Font:	0.50 mm Right-Justified	
Line 1 Marking:	TTTTT=Trace Code	Manufacturing Code from the Assembly Purchase Order form.
Line 2 Marking:	Circle=0.3 mm diameter Left-Justified	Pin 1 Indicator
	YY = Year WW = Work Week	Assigned by the Assembly House. Corresponds to the year and work week of the build date.

2 mm x 2.5 mm Top Mark

2 mm x 2.5 mm Top Mark Explanation

Mark Method:	Laser	
Font:	0.50 mm Right-Justified	
Line 1 Marking:	TTTT=Trace Code	Manufacturing Code from the Assembly Purchase Order form.
Line 2 Marking:	Circle=0.3 mm diameter Left-Justified	Pin 1 Indicator
	Y = Year WW = Work Week	Assigned by the Assembly House. Corresponds to the year and work week of the build date.

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

Patent Notice

Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

Revision 0.72 7