

SINGLE-CHIP MICROCOMPUTERS

Features

- □ 1024×8 Program ROM On-Chip; Externally Expandable to 8192×8—S2000
- ☐ 1536×8 Program ROM On-Chip; Externally Expandable to 8192×8—S2150
- ☐ 64×4 Scratchpad RAM On-Chip—S2000
- □ 80×4 Scratchpad RAM On-Chip—S2150
- □ 14 Outputs, 8 Inputs, Plus 8 Bi-Directional Three-State Lines
- ☐ TouchControl Capacitive Touchplate Interface
- □ Seconds Timer for Both 60Hz and 50Hz Lines
- ☐ 7-Segment Decoder

- ☐ LED Display Drivers—S2000/S2150
- □ Vacuum Fluorescent Display Drivers— S2000/S2150A
- ☐ Single +9V Supply
- ☐ Fast 4.5µs Execution Cycle
- ☐ Three-Level Subrouting Stack
 - TTL-Compatible Outputs
- ☐ Reset, Test, and Single Step Modes
- ☐ Crystal Input for Accurate Clocking—S2150
- S2152:D-To-F Converter Programmable Divide-by-N Counter/Timer

Functional Description

The S2000/S2150 are ideal for a wide range of appliance and process control designs. Versatile input/output and an instruction set optimized for its intended applications make the S2000 preferable to expensive multiple-chip solutions with dramatic cost reductions during product design, manufacture, testing, and maintenance.

The S2000/S2150 have an on-chip 1024/1536 instruction ROM. If necessary, additional program memory can be added externally up to a maximum of 8192 instructions. The Program Counter is a pointer to the next instruction to be executed. The Subroutine Stack holds return addresses during execution of subroutines.

The scratchpad RAM holds the temporary values of 64/80 4-bit data words, typically numeric quantities. The BU and BL registers are used to access RAM words. The E Register can be used as a general purpose register or as an index limit register for controlling RAM accesses.

The ALU—Arithmetic Logic Unit—performs data operations, using the Accumulator and the Carry Register. Software can set and test two Flags as temporary indicators.

The Control Logic includes three inputs and three outputs for interfacing external devices. The Oscillator generates all clocking signals and needs only an external RC circuit to set its rate. The KREF Input is the analog reference for TouchControl and similar interfaces. Software decision-making instructions sample the four K Inputs and the four I Inputs, one of which can be used as a line-frequency counter.

The eight bi-directional three-state D Lines are generalpurpose data signals. The thirteen A Lines are outputs for displays, keyboard strobes, control signals, or address lines for external ROM.

General Description for S2152

The S2152 is an extension of the S2000/S2150 and is software compatible with them. It has the following enhanced features:

- □ Digital-To-Frequency Converter (4-Bit)□ Programmable Divide-by-N Counter/Timer
- 15 Outputs, 4 Inputs, and 8 Bi-Directional Three-State Lines
- State Lines
- ☐ One Open Drain Output, and
 - High Current Outputs

S2000/S2150/A/S2152 Instruction Set Summary

ADCS ADD ADIS X AND CMA DISB	ACC+RAM+CARRY, Skip if Sum≤15 ACC+RAM ACC+X, Skip if Sum≤15 ACC "AND" RAM Complement ACC Display Number in Binary Format	RF1 RF2 RSC RSM Z RT RTS	Reset Flag 1 Reset Flag 2 Reset Carry Reset RAM Bit Z Return from Subroutine Return from Subroutine and Skip
DISN	Display Number in Seven Segment Format	CAM	CI: MACO DAM
EUR	(European) SET 50/60Hz and Display Latch Polarity	SAM SBE SF1 SF2	Skip if ACC=RAM Skip if BL=E Set Flag1
INP	Input 8 Bits from D Lines	SOS STC	Set Flag2 Skip if Seconds Flag Set Set Carry
JMP X JMS X	Jump Jump to Subroutine	STM Z SZC	Set RAM Bit Z Skip if Carry=0
LAB LAE LAI X	Load ACC with BL Load ACC with E LOAD ACC with X	SZI SZK SZM Z	Skip if I=0 Skip if K=0 Skip if RAM Bit Z=0
LAM Y	LOAD ACC with RAM then BU "XOR"Y	TF1 TF2	Skip if Flag1=1 Skip if Flag2=1
LBE Y LBF Y	Load BL with E and BU with Y Load BL with 15 and BU with Y	XAB	Exchange ACC with BL
LBEP Y LBZ Y	Load BL with E+1 and BU with Y Load BL with 0 and BU with Y	XABU XAE XC Y	Exchange ACC with BU Exchange ACC with E Exchange ACC with RAM then BU
MVS	Move Master Latch to Slave Latch	-	"XOR"Ÿ
NOP	No Operation	XCD Y	Exchange ACC and RAM, BU "XOR"Y, Decrement BL, and Skip if BL=0 Before Decrementing
OUT PP X PSH	Output 8 Bits to D Lines Prepare Page (or Bank) Preset Master Strobe High	XCI Y	Exchange ACC and RAM, BU "XOR"Y, Increment BL, and Skip if BL=0 After
PSL	Preset Master Strobe Low	XOR	Incrementing ACC "Exclusive-OR" RAM