Product Specification

Super8™ MCU ROMless,

" ROM, and Prototyping Device

with EPROM Interface

78800, 28801, 78820, 28822

FEATURES
m Improved Z8%® instruction set includes multiply and
divide instructions, Boolean and BCD operations.

B Additional instructions
languages, such as “Forth.”

support threaded-code

W 325 byte registers, including 272 general-purpose
registers, and 53 mode and control registers.

B Addressing of up to 128K bytes of memory.

B Two register pointers allow use of short and fast
instructions to access register groups within 600 nsec.

m Direct Memory Access controlier (DMA).
B Two 16-bit counter/timers.

Up to 32 bit-programmable and 8 byte-programmabie |/O
lines, with 2 handshake channels.

Interrupt structure supports:

O 27 interrupt sources

0 16 interrupt vectors (2 reserved for future versions)
0 8interrupt levels

1 Servicing in 600 nsec. (1 level only)

Full-duplex UART with special features.
On-chip oscillator.

20 MHz clock.

8K byte ROM for 28820

GENERAL DESCRIPTION

The Zilog Super8 single-chip MCU can be used for
development and production. It can be used as I/O- or
memory-intensive computers, or configured to address
external memory while still supporting many I/O lines.

E $ PP P L FRPEE P

/ ¢ 8 7 6 5 4 3 2 1 68 67 66 65 b4 63 62 61

NC | 10 60 | NC
Vee | 11 59 | NC
RCOMiess | 12 58 | Vec
P13 57 | POs
L7 BT s6 | por
(7] R s5 | Pa;
P | 16 sq | P35
vec | 17 53 | AS
GND | 18 SUPERS 52 | os
Vec | 19 51| Ph
XTAL2 | 20 50 | P4
XTALL | 21 49 | GND
Pa |22 48 | ano
Pas 23 47| P4y
Pag || 24 46 | P43
Paz | 25 a5 | RIW
NC | 2¢ 44 | NC

\27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ‘3/
EFEFEPCEE LRGP EEFE

Figure 1a. Pin Assignments — 68-pin PLCC

The Super8 features a full-dupiex universal asynchronous
receiver/transmitter (UART) with on-chip baud rate
generator, two programmable counter/timers, a direct
memory access (DMA) controller, and an on-chip oscillator.

The Super8 is aiso available as a 48-pin and 68-pin ROMIess
microcomputer with four byte-wide 1/O ports plus a
byte-wide address/data bus. Additional address bits can be
configured, up to a total of 16.

f28gg83

w v o N
- o = =
o o o Q

ROMiess] 7 »[P05
re O vee
P70 pos
- Po7
P P34

vee g Z8801 Pas
GND As
XTAL2] os
XTALL D] GND
Pa7 O i
. RESET

979

P1g] a8 [] pPoy
P11 []2 47[] Poq
P12 []3 46 [] po;
Pig[]a 4[] pos
P[5 4[] Pos
P58 43[] pos
P17 42[] pos
Py []s 411] poy
P29 40 % P34
P25 [] 10 [p3s
+sv [+ 3|] A5
XTAL2 E 1p SUPERE g 0s
xTaL1 [T]13 36 [] pag
Pag |14 35 [] pay
Pas [|15 34{] eND
Pag |16 33[] pa;
paz |17 32] pas
P2; 18 31 [Aiw
P3, []19 30 [] RESET
P3s |20 29[p3,
P23 |21 28] p3;
P2 |22 27 p2y
P2, 23 26 [pzg
P3y |24 251 P3p

Figure 1b. Pin Assignments — 48-pin DIP

+5 [28] +s
A2 2 27 +5
Az E 3 26 [] Avs
As] a 25] As
As[s 4[] A
A[de 23] Ay
AsE7 P:Ao":l"?- 2[] e
A2 []s EPROM 21 Ao
A []oe CKET 5 S(TE
a0 [] 10 197 o,
Do] 11 18 De
o, [12 17 gos
o, 13 16] o,
ano [14 15[o,

Figure 3. Pin Assignments—28-Pin Piggyback Socket

30,1 weser 5v
TIMING AN P) POWER
comﬁm 158 xmans |
38 | 12 } CLOCK
AS XTAL2 /™
48 Poo P20 22
14 PO, P2, | <2
:5 POz P2, 41-
Z el o P2, |
PORT O LI P2, PORT 2
A3 POs P2g AL
42 PO P2, 26
‘: P7 cupera ::
Plg P3p
LI P Paq fatim
3 P1; P3; <£'I—
4 20
PORT 1 s | i DTS PORT3
Ply P34 f—>
[39
Pis Pas |—n
4—7—> Plg P3s 439—>
ﬁ— Py P37 <%>
Pag Pdy ft—n
PORT4 | <+ e p4; fe—» | PORT4
()) 2] gy, Pag e ((V2
32 P43 P4y LT
Figure 2. Pin Functions
<] 0y Aol —
- Dy Al
<] D, A2l
-a— D3 Ay
paral _ |- A ’;__—
-—] ps As | g—
=% Perrom . [* > aooress
~—]o socker ATf+—
—»] OE Ag [
GND {—» CE Ag) —
—»| GND Ao L—
—] +5V A1t g
POWER {—-> +5V A1z f—
—] +5V Aqy f—

Figure 4. Pin Functions—28-Pin Piggyback Socket

Protopack

This part functions as an emulator for the basic
microcomputer. It uses the same package and pin-out as
the basic microcomputer but also has a 28-pin “piggy back”
socket on the top into which a ROM or EPROM can be
installed. The socket is designed to accept a type 2764
EPROM.

This package permits the protopack to be used in prototype
and final PC boards while still permitting user program

development. When a final program is developed, it can be
mask-programmed into the production microcomputer
device, directly replacing the emulator. The protopack part
is also useful in situations where the cost of mask-
programming is prohibitive or where program flexibility is
desired. "

980

1o
{BIT PROGRAMMABLE)

DMA XTAL AS DS R/W RESET

H

titttd

PORT 4

MACHINE TIMING AND
INSTRUCTION CONTROL

UART

ALU

FLAGS Z8822 [~ ADDRESS
EPROM
COUNTER/
TIMERS INTERFACE |-+ DATA
@ REGISTER
POINTERS
REGISTER FILE L] erocram
INTERRUPT 272 x B.BIT _ 1 counten
CONTROL
PORT 3 PORT 2 PORT 0 PORT 1
ADDRESS OR /0 IH
ADDRESS/OATA OR /0
(BIT PROGRAMMABLE) (BYTE PROGRAMMABLE)

/o
(BIT PROGHAMMABLE)
OR CONTROL

Z-BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 5. Functional Block Diagram

ARCHITECTURE

The Super8 architecture includes 325 byte-wide internal
registers. 272 of these are available for general purpose
use; the remaining 53 provide control and mode functions.

The instruction set is specially designed to deal with this
large register set. It includes a full complement of 8-bit
arthmetic and logical operations, including multiply and
divide instructions and provisions for BCD operations.
Addresses and counters can be incremented and
decremented as 16-bit quantities. Rotate, shift, and bit
manipulation instructions are provided. Three new
instructions support threaded-code languages.

The UART is a full-function multipurpose asynchronous
serial channel with many premium features.

The 16-bit counters can operate independently or be
cascaded to perform 32-bit counting and timing operations.
The DMA controller handies transfers to and from the
register file or memory. DMA canuse the UART or one of two
ports with handshake capability.

The architecture appears in the block diagram (Figure 5).

PIN DESCRIPTIONS

The Super8 connects to external devices via the following
TTL-compatible pins:

AS. Address Strobe (output, active Low). ASis pulsed
Low once at the beginning of each machine cycle. The
rising edge indicates that addresses R/W and DM, when
used, are valid.

DS. Data Strobe (output, active Low). DS provides timing
for data movement between the address/data bus and
external memory. During write cycles, data output is valid at
the leading edge of DS. During read cycles, data input
must be valid prior to the trailing edge of DS.

P0g-P07, P1y-P17, P2y-P27, P3¢-P3;, P4g-P4;. Port //O
Lines (input/output). These 40 tines are divided into five 8-bit
1/O ports that can be configured under program control for
1/0 or external memory interface.

In the ROMless devices, Port 1 is dedicated as a
multiplexed address/data port, and Port 0 pins can be
assigned as additional address lines; Port O non-address
pins may be assigned as I/0. In the ROM and protopack,
Port 1 can be assigned as input or output, and Port 0 can be
assigned as input or output on a bit by bit basis.

981

Ports 2 and 3 can be assigned on a bit-for-bit basis as
general 1/O or interrupt fines. They can also be used as
special-purpose /O lines to support the UART,
counter/timers, or handshake channels.

Port 4 1s used for general I/0.

During reset, all port pins are configured as inputs {high
impedance) except for Port 1 and Port 0 in the ROMless
devices. In these, Port 1 is configured as a multiplexed
address/data bus, and Port O pins P0g-P04 are configured
as address out, while pins P05-P07 are configured as inputs.

RESET. Reset (input, active Low). Reset initializes and starts
the Super8. When itis activated, it halts all processing; when

it is deactivated, the Super8 begins processing at address
0020n

ROMIless. (input, active High). This input controls the
operation mode of a 68-pin Super8. When connected to Vg,
the part will function as a ROMIess Z8800. When connected
to GND, the part will function as a Z8820 ROM part.

R/W. Read/Write (output). R/W determines the direction of
data transfer for external memory transactions, It is Low
when writing to program memory or data memory, and High
for everything else.

XTAL1, XTAL2. (Crystal oscillator input.) These pins
connect a parallel resonant crystal or an external clock
source to the on-board clock oscillator and buffer.

REGISTERS

The Super8 contains a 256-byte internal register space.
However, by using the upper 64 bytes of the register space
more than once, a total of 325 registers are available.

Registers from 00 to BF are used only once. They can be
accessed by any register command. Register addresses CQO
to FF contain two separate sets of 64 registers. One set,
called control registers, can only be accessed by register
direct commands. The other set can only be addressed by
register indirect, indexed, stack, and DMA commands.

The uppermost 32 register direct registers (EO to FF) are
further divided into two banks (0 and 1), selected by the
Bank Select bit in the Flag register. When a Register Direct
command accesses a register between EO and FF. itlooks at
the Bank Select bit in the Flag register to select one of the
banks.

The register space is shown in Figure 6.

SET ONE
[SETTWO
FFy FFy
~«J— BANK1
MODE AND BANKO
CONTROL REGISTERS
(REGISTER ADDRESSING ONLY)
-
DATA REGISTERS

EOu (INDIRECT REGISTER, INDEXED,
DFy STACK ORDMA

SYSTEM REGISTERS: ACCESS ONLY)

STACK, FLAGS, PORTS, ETC.
(REGISTER ADDRESSING ONLY}

DOW
CFu

WORKING REGISTERS

(WORKING REGISTER

ADDRESSING ONLY)
co o,
H " 256
BEy BYTES
d DATA REGISTERS ;J 192
' (ALL ADDRESSINGMODES) ' (BYTES

OO0y

Figure 6. Super8 Registers

982

Working Register Window

Control registers R214 and R215 are the register pointers,
RPO and RP1. They each define a moveable, 8-register
section of the register space. The registers within these
spaces are called working registers.

Working registers can be accessed using short 4-bit
addresses. The process, shown in section a of Figure 4,
works as follows:

® The high-order bit of the 4-bit address selects one of the
two register pointers (0 selects RPO; 1 selects RP1).

m The five high-order bits in the register pointer select an
8-register (contiguousy) slice of the register space.

B Thethree low-order bits of the 4-bit address select ore of
the eight registers in the slice.

The net effect is to concatenate the five bits from the register
pointer to the three bits from the address to form an 8-bit
address. As long as the address in the register pointer
remains unchanged, the three bits from the address will
always point to an address within the same eight registers.

The register pointers can be moved by changing the five
high bits in control registers R214 for RPO and R215 for RP1.

The working registers can also be accessed by using full
8-bit addressing. When an 8-bit logical address in the range
192 to 207 (CO to CF) is specified, the lower nibble is used
similarly to the 4-bit addressing described above. This is
shown in section b of Figure 7.

IR S

RPO (R214)

RP1(R215)

SELECTS
RPO OR AP

ADDRESS

D .
4-BIT ADDRESS PROVIDES 3 LOW-ORDER BITS

REGISTER POINTER PROVIDES
5 HIGH-ORDER BITS

TOGETHER THEY CREATE
8-BIT REGISTER ADDRESS

OPCODE

a. 4-Bit Addressing

AP0 (R214)
RP1 (R215)

SELECTS
RPO OR RP1

ADDRESS
Llefefo] |
3 LOW-ORDER BITS
REGISTER POINTER PROVIDES
5 HIGH-ORDER BITS
—

HNEEEEEE

B8-BIT PHYSICAL ADDRESS

8-BIT
LOGICAL ADDRESS

b. 8-Bit Addressing

Figure 7. Working Register Window

983

Since any direct access to logical addresses 192 to 207 Register List
involves the register pointers, the physical registers 192 to

. i i . details, see
207 can be accessed only when selected by a register Table 1 lists the Super8 registers. For more detal

pointer. After a reset, RPQ points to R192 and RP1 points to Figure 8.
R200.
Table 1. Super-8 Registers
Address
Decimal Hexadecimal Mnemonic Function

General-Purpose Registers

000-192 00-BF — General purpose (all address modes)
192-207 CO-CF — Working register (direct only)
192-255 CO-FF - General purpose (indirect only)
Mode and Control Registers
208 DO PO Port 0 1/O bits
209 D1 P1 Port 1 (/O only)
210 D2 p2 Port2
211 D3 P3 Port 3
212 D4 P4 Port 4
213 D5 FLAGS System Flags Register
214 D6 RPO Register Pointer O
215 D7 RP1 Register Pointer 1
216 D8 SPH Stack Pointer High Byte
217 D9 SPL Stack Pointer Low Byte
218 DA IPH Instruction Painter High Byte
219 DB iPL Instruction Pointer Low Byte
220 DC IRQ Interrupt Request
221 DD IMR Interrupt Mask Register
222 DE SYM System Mode
224 E0 Bank0 COCT CTR 0 Control
Bank 1 COM CTR 0 Mode
225 E1 Bank® C1CT CTR 1 Control
Bank 1 CiM CTR 1 Mode
226 E2 BankO COCH CTR 0 Capture Register, bits 8-15
Bank 1 CTCH CTR O Timer Constant, bits 8-15
227 E3 BankO0 CocL CTR 0 Capture Register, bits 0-7
Bank 1 CTCL CTR 0 Time Constant, bits 0-7
228 E4 BankOQ Ci1CH CTR 1 Capture Register, bits 8-15
Bank 1 C1TCH CTR 1 Time Constant, bits 8-15
229 ES BankQ CiCL CTR 1 Capture Register, bits 0-7
Bank 1 C1TCL CTR 1 Time Constant, bits 0-7
235 EB Bank0 uTtc UART Transmit Control
236 EC BankO0 URC UART Receive Control
237 ED BankQ UIE UART Interrupt Enable
239 EF Bank0 ulo UART Data
240 FO BankQ POM Port 0 Mode
Bank 1 DCH DMA Count, bits 8-15
241 F1 BankO PM Port Mode Register
Bank 1 DCL DMA Count, bits 0-7
244 Fa BankQ HoC Handshake Channel 0 Control
245 F5 BankQ H1C Handshake Channel 1 Control
246 F6 Bank0 P4D Port 4 Direction
247 F7 BankQ P40D Port 4 Open Drain
248 F8 BankO P2AM Port 2/3 A Mode
Bank 1 UBGH UART Baud Rate Generator, bits 8-15

984

Table 1. Super-8 Registers (Continued)

Address
Decimal Hexadecimal Mnemonic Function
Mode and Control Registers (Contnueq)
249 F9 BankO P2BM Port 2/3 B Mode
Bank 1 UBGL UART Baud Rate Generator, bits 0-7
250 FA BankQ P2CM Port 2/3 C Mode
Bank 1 UMA UART Mode A
251 FB BankQ P2DM Port 2/3 D Mode
Bank 1 UMB UART Mode B
252 FC BankO P2AIP Port 2/3 A Interrupt Pending
253 FD Bank0 P2BIP Port 2/3 B interrupt Pending
254 FE BankQ EMT External Memory Timing
Bank 1 WUMCH Wakeup Match Register
255 FF BankO PR Interrupt Priority Register
Bank 1 WUMSK Wakeup Mask Register
MODE AND CONTROL REGISTERS
R213 (D5) FLAGS R218 (DA) IPH

SYSTEM FLAGS REGISTER

lo,[of, 05104103[02 D|‘D0J

)
INSTRUCTION POINTER HIGH

T
oo oo [o[o 7]

CARRY FLAG ﬂ u BANK ADDRESS
ZERO FLAG FAST INTERAUPT STATUS
SIGN FLAG HALF-CARRY FLAG
OVERFLOW FLAG DECIMAL ADJUST

I—_—MIGN BYTE (IPB-IP15)

R218 (DB) IPL
INSTRUCTION POINTER LOW

ID7§05‘DSI'34ID3]szD1]Dol

R214 (D6) RPO
REGISTER POINTER 0

! 1 i
ID7 Us‘Dsioa[Da[Dz‘D‘IDol

(RP3-RP7) —I E NOT USED

A215 (D7) RP1
REGISTER POINTER 1

[l oo o]
(RP3-RP7) ———J I——NOT USED

LEVEL 7?7

LEVEL 4

R216 (D8) SPH
STACK POINTER

T 1
ID7 05}05104;03[0210‘ iD"I
I—HIGH BYTE (SPB-SP15)

LEVEL 6

LEVELS

I——LOW BYTE (IP0-IP7)

R220 (DC) IRQ
INTERRUPT REQUEST (READ ONLY)

Bl oo [o= o]

L

LEVELO
LEVEL 1

LEVEL2

LEVEL 3

R221 (DD} {MR
INTERRUPT MASK

[or [0 [os [ou [os oz [on 0]

-

LEVEL? —] LEVEL 0

LEVEL 6 LEVEL 1

R217 (D9) SPL LEVELS LEVEL 2
STACK POINTER

LEVEL 4 LEVEL 3

LD7JDG Ds Da‘Da]Dz[m DOI

QLOW BYTE (SP0-SP7)

Figure 8. Mode and Control Registers

985

MODE AND CONTROL REGISTERS (Continued)

R222 (DE) SYM
SYSTEM MODE

|D;7[DGLD5104103L02\D|‘DO|

L 1 = GLOBAL INTERRUPT ENABLE

NOT USED 1 = FASTINTERRUPT ENABLE

FAST INTERRUPT SELECT

R224, BANK 0 (ED) COCT
COUNTER 0 CONTROL

IDVle DSlD4]DS DzLDu‘Do

0 = SINGLE CVCLE—I L 1 = ENABLE COUNTER
1 = CONTINUQUS

READ 1 = END OF COUNT
WRITE 1 = RESET END OF COUNT
0 = COUNT DOWN

1 = COUNT UP 1 = ZERO COUNT INTERRUPT ENABLE

1 = LOAD COUNTER 1 = SOFTWARE CAPTURE

1 = SOFTWARE TRIGGER

R224 BANK 1 (EQ) COM
COUNTER 0 MODE

[0 o]os [0 os [o ml&l

INPUT PIN ASSIGNMENTS: CAPTURE MODE:
D7D D5 D4 P27 P26 00 = NO CAPTURE
000 0Juo 7S 01 = A TR o AISING
000 1|10 TRIGGER ’
10 = BI-VALUE MODE
0 0 1 0|GATE 10
00 1 1|GATE TRIGGER 11 = CAPTURE ON BOTH
EDGES OF P2;

010 o0|ro COINPUT
0 1 0 1|TRIGGER | COINPUT
6110 GATEG €O INPUT 0 = EXTERNAL
01 1 1|GATE/ UP/DOWN CONTROL P27

TRIGGER | COINPUT 1 = PROGRAMMED
10 0 o|cooutPuT |0 UP/DOWN CONTROL
10 0 1|COOUTPUT | TRIGGER
PRI pe- il s 1 = ENABLE RETRIGGER
10 1 1|COOUTPUT | GATE/TRIGGER
11 0 0]COOUTPUT | COINPUT
1101 UNDEFINED ————
1110 UNDEFINED
11 1 1 — CASCADE COUNTERS —

R225 BANK 0 (E1) C1CT
COUNTER 1 CONTROL
for |06 "os [D4 [02 [0 [0 | 00 |
0 = SINGLECYCLE J 1— 1 = ENABLE COUNTER

1 = CONTINUOUS

READ 1 = END OF COUNT

WRITE 1 = RESET END OF COUNT
0 = COUNT DOWN

1 = COUNT UP 1 = ZERQ COUNT INTERRUPT ENABLE

1 = LOAD COUNTER 1 = SOFTWARE CAPTURE

1 = SOFTWARE TAIGGER

Figure 8. Mode and Control Registers (Continued)

986

MODE AND CONTROL REGISTERS (Continued)

INPUT PIN ASSIGNMENTS:

D7 D¢ D5 Ds P3; P3s
000 O[WO 110
000 1|10 TRIGGER
¢ 0 1 0|GATE 170
0 0 1 1|GATE TRIGGER
010 0[O0 COINPUT
01 0 1|TRIGGEA | CoINPUT
01 1 0|GaTE CO INPUT
01 1 t|GATE/

TRIGGER | COINPUT
1.0 0 0|CoOUTPUT | 110
10 0 1[COOUTPUT | TRIGGER
10 1 0|COOUTPUT | GATE
10 1 1|COOUTPUT | GATE/TRIGGER
11 0 0lcooutPuT | CoINPUT
11 0 1 ————— UNDEFINED
Tt 110 UNDEFINED
11011 UNDEFINED

R226 BANK 0 (E2) COCH
COUNTER 0 CAPTURE

[D7ID5[05‘04|D1|02I01“00

[—— HIGH BYTE (C0Cg-COC;13)

R226 BANK 1 (E2) COTCH
COUNTER 0 TIME CONSTANT

[0 oe [os [oe oo ez [or [20|

T— HIGH BYTE (COTCs-COTCy5)

R227 BANK 0 (EJ) COCL
COUNTER 0 CAPTURE

‘
[o7 | oe | o5 [o4 [03 | D2 D) [0 |
I———- LOW BYTE (C0Cg-COC7)

R227 BANK 1 (E3) COTCL
COUNTER 0 TIME CONSTANT

—
on[os 05104 Da[oz Dy Dn—l
I
L LOW BYTE {COTC,-COTC7)

R228 BANK 0 (E4) C1CH
COUNTER 1 CAPTURE

[o- [os [os [0 [os oz o1 [|

I

HIGH BYTE (C1Cg:C1C1s)

R228-BANK 1(E4) C1TCH
COUNTER 1 TIME CONSTANT

" T
[or 02 [o o1 [ou [o2 [ou o0 |

L

HIGH BYTE (C1TCg-C17C15)

F225 BANK 1 (E1) C1M
COUNTER 1 MODE

Ellole oo]

CAPTURE MODE:
00 = NO CAPTURE
0t = CAPTURE ON RISING
EDGE OF P37
10 = BI-VALUE MODE
= CAPTURE ON BOTH
EDGES OF P3;

] L

0 = EXTEANAL
UP/DOWN CONTROL P37
1 = PROGRAMMED
UP/DOWN CONTROL

1 = ENABLE RETRIGGER

R229 BANK 0 (E5) C1CL
COUNTER 1 CAPTURE

ID7 IE’DS [04 | ba] DZ—ITZM | oo I
l—— LOW BYTE (C1Co-C1Cy)

R229 BANK 1 (E5) C1TCL
COUNTER 1 TIME CONSTANT

[or] s [0 [4 [0 [0z [01 [0 |
{-_—_ LOW BYTE (C1TC-C1TC7)

R235 BANK 0 (EB) UTC
UART TRANSMIT CONTROL

[T o o[o [0 o]
—) -

A236 BANK 0 (EC) URC
UART RECEIVE CONTROL

TRANSMIT DATA SELECT:
0 = OUTPUT P3, DATA
1 = OUTPUT TRANSMIT DATA

= TRANSMIT DMA ENABLE

= TRANSMIT BUFFER EMPTY

1 = SEND BREAK = ZERO COUNT

STOP BITS:
0 = 1STOPBIT
= 2STOP BITS

= TRANSMIT ENABLE

1 = WAKE-UP ENABLE

{o7 06] 25 [0a 1 Da [0z |01 [0o |

=

1 = BREAK DETECT 1

1 = WAKE-UP DETECT J 1= RECE!VE CHARACTER

AVAILA
RECEIVE ENABLE

1 = CONTROL CHARACTER DETECT
= PARITY ERROR

1 = FRAMING ERROR 1 = OVERRUN ERROR

Figure 8. Mode and Control Registers (Continued)

987

MODE AND CONTROL REGISTERS (Continued)

R237 BANK 0 (ED) VIE
UART INTERRUPT ENABLE

oo [o: [0 [o: o o]

1 = WAKE-UP INTERRUPT ENABLE —J

1 = CONTROL CHARACTER
INTERRUPT ENABLE
1 = BREAK INTERRUPT ENABLE

L 1 = RECEIVE CHARACTER AVAILABLE
INTERRUPT ENABLE
1 = RECEIVE DMA ENABLE

= TRANSMIT INTERRUPT ENABLE

= RECEIVE ERAOR INTERRUPT
ENABLE

A239 BANK 0 (EF} UIO
UART TRANSMIT DATA (WRITE)
UART RECEIVE DATA (READ)

[0 e [os [oe [oa [o o1 o |
; DATA (Do = LSB)

R240 BANK 0 (FO) POM
PORT 0 MODE

Yor [06, s | Ds [05 [02 b1 | 0 |
P0; MODE J l- PO MODE

P0s MODE POy MODE
P05 MODE POz MODE
PO, MODE P03 MODE

0 = I/0:1 = ADDRESS

240 BANK 1 (F0) DCH
MA COUNT

[o7 ¢ [05 [03 [0z [01 [00 |

1— HIGH BYTE (DC4-0C15)

R241 BANK 0 (F1)PM
PORT MODE (WRITE ONLY)

|D7 DGIDS‘DG‘D3|02|D1‘DDI
NOT USED:!— L PORT 0 DIRECTION
0 = QUTPUT

PORT 1 MODE 1 = INPUT

OPEN-DRAIN PORT 0
Q0 | OUTPUT
01 [INPUT
1X | ADDRESS/DATA

0 = PUSH-PULL

1 = OPEN-DRAIN
OPEN DRAIN PORT 1
0 = PUSH-PULL

1 = OPEN-DRAIN
ENABLE DM P35

0 = DISABLE

1 = ENABLE

A241 BANK 1 (FUDCL
IJES]DE‘ Da!Dz‘Du I
\—~ LOW BYTE {DCo-DC7)

DESKEW COUNTER ——-|

1 = ZERO COUNT INTERRUPT ENABLE

R244 BANK 0 {F4) HOC
HANDSHAKE 0 CONTROL {WRITE om_v)

I_IDG Dle4 Insz Dn

1=PORT1;0 = PORT 4

DESKEW COUNTER :’— 1 = HANDSHAKE ENABLE
{RANGE 1-16)
PORT SELECT:

DMA ENABLE:
1 = ENABLED
0 = DISABLED

MODE:

1 = FULLY INTERLOCKED
0 = STROBED

R245 BANK 0 (F5) H1C
HANDSHAKE 1 CONTROL (WRITE ONLY)

e[lo oo o]

L = HANDSHAKE ENABLE
(RANGE 1-16)

NOT USED
MODE:

1 = FULLY INTERLOCKED
0 = STROBED

R246 BANK 0 (F6) P4D
PORT 4 DIRECTION

,
for Jos [os fou [0 02 [0 {00 |
; P4¢-P47 1/O DIRECTION

0 = QUTPUT; 1 = INPUT

A247 BANK 0 (F7) P4OD
PORT 4 OPEN-DRAIN

o7 [06 [05 [04 [03 [0z [0y [00 |
P4¢o-P47 OPEN-DRAIN

0 = PUSH-PULL; 1 = OPEN-DRAIN

R248 BANK 0 (FB) P2AM
PORT 2/3 A MODE (WRITE ONLY)

IDviDB;DsJoa 03!02101‘%'
P3|MODE——| |———P2n MODE

P3¢ MODE P2 MODE

00 | INPUT

01 [INPUT, INTERRUPT ENABLED
10 | QUTPUT, PUSH-PULL

11| OUTPUT, OPEN-DRAIN

Figure 8, Mode and Control Registers (Continued)

988

MODE AND CONTROL REGISTERS (Continued)

R248 BANK 1 (F8) UBGH
UART BAUD-RATE GENERATOR

|D7I05'05 DAf‘DJ]DZ DiIDol

j— HIGH BYTE (UBGg-UBG15)

R249 BANK 0 (F9) P2BM
PORT 2/3 B MODE (WRITE ONLY)

[or {oe [o5 {04 Da [02 |01 |06 |
P33 MODEJ L P2; MODE

P3; MODE P23 MODE

R250 BANK 0 (FA) P2CM
PORTY 2/3 C MODE (WRITE ONLY)

|n7 Dles’D4’03]DQ]D| Inal
Pas MODE—] l— P24 MODE

P34 MODE P25 MODE

00 | INPUT

01 [INPUT, INTERRUPT ENABLED
10 | OUTPUT, PUSH-PULL

11 | OUTPUT, OPEN-DRAIN

R250 BANK 1 (FA) UMA
UART MODE A

Jor [o6 05 [0 [0 [0z |04 [s |

00 [INPUT L
01 | INPUT, INTERRUPT ENABLED TRANSMIT WAKE-UP VALUE
10 [OUTPUT, PUSH-PULL CLOCKRATE

11 {QUTPUT, OPEN-DRAIN

R749 BANK 1 (F3) UBGL
UART BAUD-RATE GENERATOR

ID7‘D5|05I04 DsTD'z D1]Do]
’—— LOW BYTE (UBGo-UBG7)

R251 BANK 0 (FB) P2DM
PORT 2/3 D MODE (WRITE ONLY)

IDT[DJDS D,ID;IDJD.TDOI

T
P3; MODE

L, P25 MODE

P35 MODE

P2; MODE

00 | INPUT

01 | INPUT, INTERRUPT ENABLED

10 [OUTPUT, PUSH-PULL
11 [QUTPUT, OPEN-DRAIN

A251 BANK 1 (FB) UMB
UART MODE B

IDvTDs ; DqTJA] D3 | D2 ‘[01]Tnl

CLOCK OUTPUT SELECT :]

D7 Dg

0 0 =P2,DATA

0 1 = SYSTEM CLOCK (XTAL/2)

1 0 = BAUD-RATE GENERATOR
OUTPUT

1 1 = TRANSMIT DATA CLOCK

1 = AUTO-ECHO

RECEIVE CLOCK INPUT SELECT:

0= P2
1 = BAUD-RATE GENERATOR
OUTPUT

[- 1 = LOOPBACK ENABLE
1 = BAUD-RATE GENERATOR ENABLE

BAUD-RATE GENERATOR SOURCE:
0 = P2o (EXTERNAL)
1 = INTERNAL (XTAL/4}

TRANSMIT CLOCK INPUT SELECT:
0= P2
1 = BAUD-RATE GENERATOR OUTPUT

Figure 8. Mode and Control Registers (Continued)

= EVEN PARITY

RECEIVE WAKE-UP VALUE

= PARITY ENABLE

989

MODE AND CONTROL REGISTERS (Continued)

R252 BANK Q (FC) P2AIP R254 BANK 1 (FE) WUMCH
PORT 2/3 A INTERRUPT PENDING (READ ONLY) WAKE-UP MATCH REGISTER

ID)}DEL iDaLg‘Dz!D‘lDo r Dg Dslnalnsioz 4] Dd
P33 J LP?O l————— THIS BYTE, MINUS MASKED BITS,
P32

1S USED FOR WAKE-UP MATCH

P2,
P23 P3g
P23 P3;
R255 BANK 0 (FF) IPR
INTERRUPT PRIORITY REGISTER
ID7‘DB D5|DalDalDz‘D1 |ou|
‘
GROUP PRIORITY , ! J |— GROUP A
0 = 1RG0 > IRQ1
R253 BANK 0 (FD) P2 BIP D7 D4 Dy S a1 A0
PORT 2/3 BINTEARUPT PENDING (READ ONLY) =6 0 - UNDEFINED
In? Ds | oq Ds i D; | D2 ‘ D, I Do I S0 zBtie o has > (IRQ3.1RG4)
il | 011 =B-A-C = (IRQ3.IRC4) > IAQ2
100 =C-A>B
J L 101 =C-BA SUBGROUP B
P37 P2y 110 =A>C>B 0 = IRQ3 > IRQ4
11 1 = UNDEFINED = IRQ4 > IRQ3
R P2
P s GROUP C
p3 0 = IRGS > (IRQS,IRQ7)
P ‘ 1 = (IRQ6,IRQ7) > IRQS
P25 P3s SUBGROUP C
0 = IRGS > IRQ7
= IRQ7 > IRQE
R254 BANKO (FE) EMT R255 BANK 1 (FF) WUMSK
EXTERNAL MEMORY TIMING REGISTER WAKE-UP MASK REGISTER
:
Bro oo oo o T] oo ool T o]
:

|-— DMA SELECT: L—_— THESE BITS CORRESPOND TO BITS

= REGISTERFILE IN WAKE-UP MATCH REGISTER; 0s
= DATA MEMORY MASK CORRESPONDING MATCH BITS

STACK SELECT:
0 = REGISTER FILE
1 = DATA MEMORY

l———————— DATA MEMORY AUTOMATIC WAITS
0 = NO WAITS

0

] 1 WAIT
1 2 WAITS
11 = 3WAITS

PROGRAM MEMORY AUTOMATIC WAITS
= TS

1| = 3WAITS

SLOW MEMORY TIMING
0 = DISABLED
1 = ENABLED

EXTEHNAL WAIT INPUT
P34 IS NORMAL 1/Q
P3,1S EXTERNAL WAIT INPUT

1

Figure 8. Mode and Control Registers (Continued)

990

iI/0 PORTS

The Super8 has 40 I/0 lines arranged into five 8-bit ports.
These lines are all TTL-compatible, and can be configured
as inputs or outputs. Some can alsc be configured as
address/data lines.

Each port has an input register, an output register, and a
register address. Data coming into the port is stored in the
input register, and data to be written to a port is stored in the
output register. Reading a port's register address returns the
value in the input register; writing a port's register address
loads the value in the output register. If the port is configured
for an output, this value will appear on the external pins.

When the CPU reads the bits configured as outputs, the
data on the external pins is returned. Under normal output
loading, this has the same effect as reading the output
register, unless the bits are configured as open-drain
outputs.

The ports can be configured as shown in Table 2.

Table 2. Port Configuration

Port Configuration Choices
0 Address outputs and/or general I/O
1 Multiplexed address/data(or I/0, only for ROM

and Protopack)

2and3 Control /0 for UART, handshake channels, and
counter/timers; also general 1/O and external
interrupts
4 General 10
Port 0

Port O can be configured as an YO port or an output for
addressing external memory, or it can be divided and used as
both. The bits configured as I/O can be either all outputs or all
inputs; they cannot be mixed. If configured for outputs, they
can be push-pull or open-drain type.

Any bits configured for /O can be accessed via R208. To write
to the port, specify R208 as the destination (dst) of an
instruction; to read the port, specify R208 as the source (src).

Port 0 bits configured as I/O can be placed under handshake
control of handshake channel 1.

Port 0 bits configured as address outputs cannot be accessed
via the register

In ROMiess devices, initially the four lower bits are configured
as address eight through twelve.

Port 1

In the ROMless device, Port 1 is configured as a byte-wide
address/data port. It provides a byte-wide multiplexed
address/data path. Additional address lines can be added
by configuring Port 0.

The ROM and Protopack Port 1 can be configured as above
or as an /O port; it can be a byte-wide input, open-drain
output, or push-pull output. It can be placed under
handshake control or handshake channel 0.

Ports2and 3

Ports 2 and 3 provide external control inputs and outputs for
the UART, handshake channels., and counter/timers. The
pin assignments appear in Table 3.

Bits not used for control IO can be configured as
general-purpose I/0 lines and/or external interrupt inputs.

Those bits configured for general /O can be configured
individually for input or output. Those configured for output
can be individually configured for open-drain or push-pull
output.

All Port 2 and 3 input pins are Schmitt-triggered.
The port address for Port 2 is R210, and for Port 3is R211.

Table 3. Pin Assignments for Ports 2 and 3

Port 2 Port 3

Bit Function Bit Function

0 UART receive clock 0 UART receive data

1 UART transmit clock 1 UART transmit data

2 Reserved 2 Reserved

3 Reserved 3 Reserved

4 Handshake O input 4 Handshake 1 input/WAIT
5 Handshake O output 5 Handshake 1 output/DM
6 Counter 0 input 6 Counter 1 input

7 Counter 0 1/O 7 Counter 11/0

Port 4

Port 4 can be configured as I/O only. Each bit can be
configured individually as input or output, with either
push-pull or open-drain outputs. All Port 4 inputs are
Schmitt-triggered.

Port 4 can be placed under handshake control of
handshake channel 0. Its register address is R212.

991

UART

The UART is a full-duplex asynchronous channel. It
transmits and receives independently with 5 to 8 bits per
character, has options for even or odd bit parity, and a
wake-up feature.

Data can be read into or out of the UART via R239, Bank Q.
This single address is able to serve a full-duplex channel
because it contains two complete 8-bit registers—one for
the transmitter and the other for the receiver.

Pins
The UART uses the following Port 2 and 3 pins:

Port/Pin UART Function
210 Receive Clock
3/0 Receive Data
21 Transmit Clock
31 Transmit Data
Transmitter

When the UART's register address is specified as the
destination (dst) of an operation, the data is output on the
UART, which automatically adds the start bit, the
programmed parity bit, and the programmed number of
stop bits. It can also add a wake-up bit if that option is
selected.

ifthe UART is programmed for a 5-. 6-, or 7-bit character, the
extra bits in R239 are ignored.

Serial data is transmitted at a rate equal to 1, 1/16, 1/32 or
1/64 of the transmitter clock rate, depending on the
programmed data rate. All data is sent out on the falling
edge of the clock input.

When the UART has no data to send, it holds the output
marking {(High). t may be programmed with the Send Break
command to hold the output Low (Spacing), which it
continues until the command is cleared.

Receiver

The UART begins receive operation when Receive Enable
(URC, bit 0) is set High. After this, a Low on the receive input
pin for longer than half a bit time is interpreted as a start bit.
The UART samples the data on the input pin in the middle of
each clock cycle until a complete byte is assembled. This is
placed in the Receive Data register.

Ifthe 1X clock mode is selected, external bit synchronization
must be provided, and the input data is sampled on the
rising edge of the clock.

For character lengths of less than eight bits, the UART
inserts ones into the unused bits, and, if parity is enabled,
the parity bit is not stripped. The data bits, exira ones, and
the parity bit are placed in the UART Data register (U10).

While the UART is assembling a byte in its input shift register,
the CPU has time to service an interrupt and manipulate the
data character in UIO.

Once a complete character is assembled, the UART checks
it and performs the following:

® |f it is an-ASCIl control character, the UART sets the
Control Character status bit.

B It checks the wake-up settings and completes any
indicated action.

m |f party is enabled, the UART checks to see if the
calculated parity matches the programmed parity bit. If
they do not match, it sets the Parity Error bit in URC
(R236 Bank 0), which remains set until reset by software.

B [t sets the Framing Error bit (URC, bit 4) if the character is
assembled without any stop bits. This bit remains set until
cleared by software.

Overrun errors occur when characters are received faster
thanthey are read. Thatis, whenthe UART has assembled a
complete character before the CPU has read the current
character, the UART sets the Overrun Error bit (URC, bit 3),
and the character currently in the receive buffer is lost.

The overrun bit remains set until cleared by software.

992

ADDRESS SPACE

The Super8 can access 64K bytes of program memory and
64K bytes of data memory. These spaces can be either
combined or separate. If separate, they are controlled by the
DM line (Port P3g), which selects data memory when Low
and program memory when High.

Figure 9 shows the system memary space.

CPU Program Memory

Program memory occupies addresses 0 to 64K. External
program memaory, if present, is accessed by configuring
Ports 0 and 1 as a memory interface.

The address/data lines are controlled by AS, DS and RIW.

The first 32 program memory bytes are reserved for
interrupt vectors; the lowest address available for user
programs is 32 (decimal). This value is automatically loaded
into the program counter after a hardware reset.

ROMIless

Port 0 can be configured to provide from 0 to 8 additional
address lines. Port 1 is always used as an 8-bit multiplexed
address/data port.

ROM and Protopack

Port 1 is configured as multiplexed address/data or as /0.
When Port 1 is configured as address/data, Port O lines can
be used as additional address lines, up to address 15.
External program memory is mapped above internal
program memory: that is, external program memory can
occupy any space beginning at the top of the internal ROM
space up to the 64K (16-bit address) limit.

CPU Data Memory

The external CPU data memory space, if separated from
program memory by the DM optional output, can be
mapped anywhere from 0 to 64K (full 16-bit address space).
Data memory uses the same address/data bus (Port 1) and
additional addresses (chosen from Port 0) as program
memory. Data memory is distinguished from program
memory by the DM pin (P3s), and by the fact that data
memory can begin at address 0000. This feature differs
from the Z8.

65535 65535
EXTERNAL
PROGRAM
MEMORY EXTERNAL
DATA
MEMORY
THIS BOUNDARY
MAY BE AT 0, OR
8192 DEPENDING ON
ROM SIZE ON-CHIP
ROM OR
32 PROTOPACK
EP
INTERRUPT VECTORS ROM
1] L]
PROGRAM MEMORY DATA MEMORY

Figure 9. Program and Data Memory Address Spaces

993

INSTRUCTION SET

The Super8 instruction set is designed to handle its large
register set. The instruction set provides a full complement
of 8-bit arithmetic and logical operations, including multiply
and divide. It supports BCD operations using a decimal
adjustment of binary values, and it supports incrementing
and decrementing 16-bit quantities for addresses and
counters.

it provides extensive bit manipulation, and rotate and shift
operations, and it requires no special 1/O instructions—the
I/0 ports are mapped into the register file.

Instruction Pointer

A special register called the Instruction Pointer (IP) provides
hardware support for threaded-code languages. It consists
of register-pair R218 and R219, and it contains memory
addresses. The MSB is R218.

Threaded-code languages deal with an imaginary
higher-level machine within the existing hardware machine.
The IP acts like the PC for that machine. The command
NEXT passes control to or from the hardware machine to the
imaginary machine, and the commands ENTER and EXIT
areimaginary machine equivalents of (real machine) CALLS
and RETURNS.

If the commands NEXT, ENTER, and EXIT are not used, the
IP can be used by the fast interrupt processing, as
described in the Interrupts section.

Flag Register

The Flag register (FLAGS) contains eight bits that describe
the current status of the Super8. Four of these can be tested
and used with conditional jump instructions; two others are
used for BCD- arithmetic. FLAGS also contains the Bank
Address bit and the Fast Interrupt Status bit.

The flag bits can be set and reset by instructions.

CAUTION

Do not specify FLAGS as the destination of an
instruction that normally affects the flag bits or the
result will be unspecified.

The following paragraphs describe each flag bit:

Bank Address. This bit is used to select one of the register
banks (0 or 1) between (decimal) addresses 224 and 255. It
is cleared by the SBO instruction and set by the SB1
instruction.

Fast Interrupt Status. This bit is set during a fast interrupt
cycle and reset during the IRET following interrupt servicing.
When set, this bit inhibits all interrupts and causes the fast
interrupt return to be executed when the IRET instruction is
fetched.

Half-Carry. This bit is set to 1 whenever an addition
generates a carry out of bit 3, or when a subtraction borrows
out of bit 4. This bit is used by the Decimal Adjust (DA)
instruction to convert the binary result of a previous addition
or subtraction into the correct decimal (BCD) result. This
flag, and the Decimal Adjust flag, are not usually accessed
by users.

Decimal Adjust. This bit is used to specify what type of
instruction was executed last during BCD operations, so a
subsequent Decimal Adjust operation can function
correctly. This bit is not usually accessible to programmers,
and cannot be used as a test condition.

Overflow Flag. This flag is set to 1 when the result of a
twos-complement operation was greater than 127 or less
than -128. It is also cleared to 0 during logical operations.

Sign Flag. Following arithmetic, logical, rotate, or shift
operations, this bit identifies the state of the MSB of the
result. A O indicates a positive number and a 1 indicates a
negative number.

Zero Flag. For arithmetic and logical operations, this flag is
setto 1 if the result of the operation is zero.

For operations that test bits in a register, the zero bitis setto 1
if the result is zero.

For rotate and shift operations, this bitis setto 1 if the resultis
Zero.

Carry Flag. Thisflagis setto 1 ifthe result from an arithmetic
operation generates a carry out of, or a borrow into, bit 7.

Atter rotate and shift operations, it contains the last value
shifted out of the specified register.

It can be set, cleared, or complemented by instructions.

994

Condition Codes Addressing Modes

Theflags C. Z, S, and V are used to control the operation of All operands except for immediate data and condition
conditional jump instructions. codes are expressed as register addresses, program
memory addresses, or data memory addresses. The

The opcode of a conditional jump contains a 4-bit field addressing modes and their designations are:

called the condition code (cc). This specifies under which

conditions it is to execute the jump. For example, a Register (R)

conditional jump with the condition code for “"equal” after a Indirect Register (IR)

compare operation only jumps if the two operands are Indexed (X)

equal. Direct (DA)

The condition codes and their meanings are given in Re“"““‘? (RA)

Table 4. Immediate (IM)
Indirect (1A)

Table 4. Condition Codes and Meanings

Binary Mnemonic Flags Meaning

0000 F — Always false

1000 — — Always true

0111~ C C=1 Carry

1111 NC C=0 No carry

0110~ Z Z=1 Zero

1110* NZ Z=0 Not zero

1101 PL 5=0 Plus

0101 M! 5=1 Minus

0100 oV V=1 Qverflow

1100 NOV V=0 No overflow

0110 EQ Z=1 Egual

1110~ NE Z=0 Not equal

1001 GE (SXORV)=0 Greater than or equal
0001 LT (SXORV)=1 Less than

1010 GT (ZOR(SXORV))=0 Greater than

0010 LE (ZOR(SXOR V) =1 Less than or equal
111 UGE C=0 Unsigned greater than or equal
0111~ ULT C=1 Unsigned less than
1011 UGT (C=0ANDZ=0)=1 Unsigned greater than
0011 ULE (CORZ)=1 Unsigned less than or equal

NOTE: Asterisks (*) indicate condition codes that relate to two different mnemaonics but test the same flags. For example, Z and EQ are both True fthe
Zero flag is set, but after an ADD instruction, Z would probabty be used, while after a CP instruction, EQ would probably be used

995

Registers can be addressed by an 8-bit address inthe range
of 0 1o 255. Working registers can also be addressed using
4-bit addresses, where five bits contained in a register
pointer (R218 or R219) are concatenated with three bits
from the 4-bit address to form an 8-bit address.

Registers can be used in pairs to generate 16-bit program or
data memory addresses.

Notation and Encoding

The instruction set notations are described in Table 5.

Functional Summary of Commands

Figure 10 shows the formats followed by a quick reference
guide to the commands.

Table 5. Instruction Set Notations

Notation Meaning Notation Meaning
cc Condition code (see Table 4) DA Direct address (between 0 and 65535)
r Working register (between 0 and 15) RA Relative address
rb Bit of working register M Immedate
ro Bit 0 of working register IML Immediate long
R Register or working register dst Destination operand
RR Register pair or working register pair (Register pairs src Source operand
always start on an even-number boundary) @ Indirect address prefix
1A Indirect address SP Stack pointer
Ir Indirect working register PC Program counter
IR Indirect register or indirect working register P Instruction pointer
Irr Indirect working register pair FLAGS Flags register
IRR Indirect register pair or indirect working register pair RP Register pointer
X Indexed # Immediate operand prefix
XS Indexed. short offset % Hexadecimal number prefix
XL Indexed, long offset OPC Opcode

One-Byte Instructions

CCF. D). EI. ENTER, EXIT. JRET, NEXT. NOP,

OPC RCF. RET. $B0. 581. SCF. WF
[ast Topc] inc
Two-Byte Instructions
ADC, ADD. AND,CP LD, LDC, LDCI, LDCD.
[_orc] Lest [sre 1 o pED. oR, SBC. SUB. TCM. T™. XOR
[oPC] [[src] dst] LDC.LDCPD, LDCPI, LDE, LOEPD. LDEPI
CALL, DA, DEC, DECW, INC. INCW, JP, POP.
L _orc] ot 1 RiRic. AR, RRC, SWAP. CLR. SRA, COM
[OPC] [stcc____ | PUSH.SRP SRPO. SRP1
[orc [Cdst T b Jo] sitc.BiTR
orPC dsi b BITS
[~ Torc] [dst___ | DINZ
Lec [orc] [dst 1 4R
[ast Toec] [s | o
[Csre Topc] [ast] wo

Figure 10. Instruction Formats

996

Three-Byte Instructions

ADC. ADD. AND. CP. LD. OR, PUSHUD

[orc][dst I s] pushur sec. SUB Tcw. TV, XOR

L ore] [=e] [t] GR%hiopud pobur SBc. SUB. TCH. T x0R
[OPC] [Cast ToJo] [src] BAND. BCP. BOR. BXOR. LDB

| OPC] [se To 1] [dst] BAND. BOR. BTURT. BXOR. LOB

[opc] [sre o J0] [dst] BTJRF

opC] src | dst f RA] cPuE. CPNE

[orc] Dost T x]] src LD.LDC. LDE
[orc] [se T] 1 dst | LD.LOC.LDE
[oPC] | dst] caLL

[ec Jorc] | dst] J°

Four.Byte Instructions

oPC dst [x-0or 1 LDC. LDE

] | [estlcoon] [[Juoc ' FORLDC. x = EVEN

FORLDE. x = ODD

0PC src [x:0ord] | dst [dst] Loc. LoE ’

[opc_ | dst Joooo]| | src] [src LDC -

[opc | [IreToooe] [dst I dst Lbc

| Oopc | [Cast Jooor] [s] [src] Loe

[opc] [Cest Jooot] | dst] [et] Lo

[orC_ | dst] [src] tow

Figure 10. Instruction Formats (Continued)

INSTRUCTION SUMMARY
Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected

Instruction ——— Byte ——m— Instruction ————— Byte —— ——
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) C Z S VDH
ADC dst,src (Note 1) 1 * k * — 0 » BOR dst, sic 0 B o7 — % 0 U ——
dst<dst + src + C dst < dstOR src Rb 10
ADD dst src (Note 1) orl * x % & 0 BTJRF RA 1b 37 - - — =
dst < dst + src ifsrc = 0, PC = PC + dst
AND dst.src (Note 1) 5071 — % * 0 — — BTJRT RA b 37 = — = — -
dst < dst AND src fsrc =1, PC = PC + dst
BAND dst,src 0 Rb 67 — % 0 U—— BXOR dst, src 0 Rb 27 — % 0 U — —
dst <= dst AND src Rb 0 67 dst < dst XOR src Rb 0 27
BCP dst, src 0 Rb 17 — * 0 U —— CALL dst DA - ——
dst — src SP+<3P -2 IRR F4
BITC dst b 57 — % 0U—— F@CSF:; TC A .
dst < NOT dist °

CCF EF % — — — — —
BITR dst b 77— — = - — —
dst—0 C =NOTC

CLR dst R BO ———
:;E?St o [dst—0 IR B

997

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte —— i — Instruction ——— Byte —m——
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) € Z SVDH
COM dst R 60 — % ® 0 — — INCW dst RR AO — % % * — —
dst <= NOT dst IR 61 dst< 1 + dst IR Al
CP dst,src (Note 1) Al * * k ok — — IRET (Fast) BF Restored to
dst ~ src PC <P before interrupt
CPIJE o e - PLAG PG
ifdst — src = Othen
PC < PC + RA IRET (Normal) BF Restored to
freir+1 FLAGS < @SP; SP <SP + 1 before nterrupt
CPIUNE ; Ir D2 _ — _ _ PC < @SP,SP <SP + 2, SMR(0) « 1
if dst — src = O,then JP cc.dst DA ccD _—_—— = = —
PC < PC + RA itccistrue, (cc=0t0F)
Ire=lr+1 PC < dst IRR 30
DA dst R 40 * % * U — — JR cc.dst RA ccB _——— =
dst < DA dst IR 41 if ccis true, (cc=0toF)
DEC dst R 00 — % % % — — PC-PC+d
dst < dst - 1 IR 01 LD dst,src r M c @ -
DECW dst AR 80 — ke 0TS ‘R 8
dst < dst - 1 IR 81 R 9
{r=01F)
DI 8F - — = — — — r IR Cc7
SMR (0) <0 IR r D7
E4
DIV dst. src 2 lF; E5
dst = src RR R 94 * gk ok — — R M £6
dst (Up'per) At RR IR a5 =Y 06
Quotient R R Fs5
dst (Lower) < RR M 96 ' X 87
Remainder « ; 97
rDisz'?St RA o g? o LDB dst. src 0 Rb 47 - — —— — —
it _r 0 (r=0t0F) dst « src Rb 10 47
PC < PC + dst LDC/LDE r Irr 3 - == ——
El o - _ dst < src i? er lgi;
SMR (0) < 1 s) F7
ENTER 1F - = S A7
SP«SP -2 x1 r B7
@ SP < IP r DA A7
IP < PC DA r B7
PC-@aP LDCD/LDED dstsrc 1 It E2 — — — — — —
P—iP+2
dst < src
EXIT 2F - — — — — - e -1
IP—@SP
PSP 4 2 ZSE(—V:EG dst, src r Irr £3 —-——
PC—@IP e+ 1
PPy f
INC dst r rE — % ok k- — :}TPWI}DEPD dst.Srcm ; o
dst < dst + 1 (r=0t0F) det :src
R 20
IR 21

998

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction ———— Byte ——m—— Instruction —— Byte —— ——
and Operation dst src (Hex) C Z S VDH and Operation dst src (Hex) C Z S VDH
LDCPI/LDEPI dst, src RLC dst R 10 * ok k k — —
e+ 1 Irr r F3° - — - — = dst(0)« C IR 11
dst < src C < dst(7)
dst(N+ 1) < dst(N
LDW dst, src RR RR C4 — — — — —— st OTO% stN)
dst < src RR IR C5
RR IMM C6 RR dst R EO * k k ok — —
- 1
MULT ast, src RR R 84 % 0 %% - GO0 IR .
dst (7) < dst (0)
RR IR 85
RR M 86 dst(N) < ast(N+1)
N =0t6
Fooo
NEXT 0 RRC dst R co * ok ok X — —
PC < @IP
PeIP + 2 C = dst (0} IR C1
dst (7)< C
NOP FF — — — — — — dst (N) < dst (N + 1)
OR dst,src (Note 1) 401 — % * 0 — — N-0ws
dst < dst OR src SBO AF e
POP dst R 50 09— — — —— — BANK =0
dst < @SP; IR 51 SB1 5F e
SP <SP + 1 BANK « 1
POPUD dst. src R IR 92 @ @ - = == SBC dst,src (Note 1) 3L * ok ok x 1 x
dst < src dst < dst - src - C
R SCF DF 1 —— — — —
POPUI dst, src R IR 93 - — = — = C+1
t<—
:j;«l;ri 1 SRA dst R Do * * * 0 — —
dst (7) < dst (7) IR D1
PUSH src R 70 - === = C < dst (0)
SP <SP — 1; @SP < src IR 71 dst{N) = dst(N+ 1)
PUSHUDdstsc R R 82 — — — — — — N -0w6
IR< IR -1 SRP src M o1
dst < src RPQO < IM
PUSHUIdstsc R R 83 - — — — — — AP1=M+8
IR=IR + 1 SRPO IM 3 - - =
dst < src RPO « IM
RCF CF 0 —— = —— SRP1 IM 33— ——
C«<0 RP1 1M
RET AF —_— = — - = SUB dst src (Note 1) 20 * k k x |
PC «~ @SP;SP <SP + 2 dst < dst - src
RL dst R 90 * ok kX — —
C ~dst(7) IR 91
dst (0) + dst (7)
dst (N + 1) < dst (N)
N =0t06

999

INSTRUCTION SUMMARY (Continued)

Table 6. Second Nibble

Addr Mode Opcode Flags Affected
Instruction Byte
and Operation dst src (Hexy CZSVDH Addr Mode Lower
dst src¢ Opcode Nibble
SWAP dst R FO — % ® U — —
dst (0-3) < dst (4-7) IR F1 r r
TCM dst,src (Note 1) 601 — % % 0 — — r Ir
NOT dst} AND src
(NOT st R R
TM dst,src (Note 1) 70 — % % 0 — —
dst AND src R R
WFI F - — R M (€]
. o For example, to use an opcode represented as x| | with an "RR”
);gt‘_dj;s;ém sre (Note 1) B0 * 0 addressing mode. use the opcode "x4.

NQTE 1: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble identifies
the command, and is found in the table above. The second
nibble, represented by a (3, defines the addressing mode as

shown in Table 6.:

0
"

*
U

= Cleared to Zero

= Setto One

= Unaffected

= Set or reset, depending on result of operation.
= Undefined

1000

SUPER-8 OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9
e T e s 6 | 10 10 10 m s | & |
o | DEC \ DEC - ADD | ADD | ADD ; ADD | ADD BOR' LD LD
R [L” o | reds | RyRy | IRy Ry | RpIM Den rR | Ry
6 6 ’ 6 6 10 10
1 | ac | mc | aoc ! apc \ ADC | ADC ADC BCP
R JR,g" o ryly | RoR- mgm ' R IM “1.b Rz
é"ArWa’ 6 & | w0 | 10 \
2 INC ’ INC SUB | SUB | SUB SUB sus sxon-
Ry | PRy fp | rada | RoRy | IR2By | RyIM | 1R, ’
AL %,W R Jﬁ B I P
10 6 & 10 10 10
3 | o | MUTE | spc | sc | ssc | sec | sac NTE ‘
IRR, rap o | RaRe | IRy R
s 6 | ® 6 w | e
4 \ DA DA OR \ OR OR OR
R 1Ry o o | RoRy IRoR ‘
0 110 w 6 AT 5 10 10 o | s 1
5 | POP POP | AND AND | AND | AND BITC [
R | IR } s ‘ S Rom \ IRz Ry | R b \ !
5 | 6 6 w10 0 | |
4 6 [COM | COM | TCM | TcM | TcM | TCM | TCM |BAND"
% Ry \R, .05 rpary o Ba Ry IRp Ry R, M rQR
= wie | 12a | 6 | & | 10 | 10 | 10 W
2 7 |reusH pusH | ™| o™ ™ | ™ | M NOTE f
2 Ry |r2 ‘ 1y qdrz - Ro Ry Ay W J \
2 e e el ‘
E 10 ‘O 10 10 24 24 O \
2 s | DECW | DECW [PUSHUD;PUSHUI| MULT | MULT MULT ‘ LD
o | o R "IR{R> | R Az | RoRR, IRsAR. | IMRR, ‘ oz
=) ALY S e e .
I e a 10 4 10 | zsnz 2sn2 | o2 | s
9 I RL \POPUD‘ POPUI' DIV | DIV | O LD
Ry JR\ J»IH?R‘ . v 3.0 \
Ty | 1o [; 5 | 10 10 10 T
A ' INCW | iNcw \ cp e | o | cp op | NOTE .
RR, I N R i U ary | Ry
kréﬂ s s s 1o 10 o0 |
ol i o B
B ‘ CLR ‘ CLR | XOR ‘ XOR | XOR | XOR | XOR N%TE
iR IR- r | RyRy | RsB- | R-iM ‘\
F% T 5 s w0 | e Tz | e :
C RRC | RRC | CPWE LDW | LDW LDW | LD
R, Ry | irraRaA RRZ AR | Ry RR. ARV | - i ‘
" 5 618 , R N B R B 1
D ‘ SRA | SRA |CPINE| LDC' | CALL LD LD ’
Ry IR~ Lrn 1o RA| oy 14 IR-.IM Iry,ro \
T 6 6 16 6 10 | 10 w | 18
E RR RR |LDCD" ' Loct | LD LD Lp | Lbc*
Ry R4 I "fg rydirg Rz R- 1R> Ry
{'8 8 16 | e | . 1w
F | SWAP | SWAP LDCPD*!LDCPI*| CALL & LD
t Ry W‘ALQVH plIrry |Rm Rz R
Tens | 168 | r 84‘ 5] lfﬁefj 5 6
NOTEA . BTJRF |BTJRT | NOTEB BITR | BTS | NOTEC | SRP SRPO \ SRP1
[1, bRA | robRA | no b I M
e _ ,
20 20 (20 T)a
NOTE D (LDC' . LDC* | NOTEE | Lbc* ' Lpc* |
'wu;,)_,l 1. DAy ’ r;‘vwmi o D» 1
Figure 11. Opcode Map

A B Cc D E

12110 6
JP \ INC
cc.DA r

1210 | 1210 | 6
DINZ ' JR LD
r1.RA ccRA | 1M

I 4
NEXT

20
| ENTER

-

22

e

B
<
n

|

[
-«

Legend:

1 = 4-btaddress

R = 8-bitaddress

b = bit number

Ry orry = dstaddress
Rzorrp = srcaddress

*Examples:
BOR rg-Ro
15 BOR b Ry
o BOR 1y =Ry
LOC rylrrp
15LDC 4.ty = program
of LDE ry lrip = de

Sequence:
Ouocode. first. second. tird aperands

NOTE: Tre blank areas are nct aefinag

1001

INSTRUCTIONS

Table 7. Super8 Instructions

Mnemonic Operands Instruction Mnemonic Operands Instruction
Load Instructions Program Control Instructions
CLR dst Clear BTJRT dst, src Bit test jump relative on True
LD dst, src Load BTJRF dst, src Bit test jump relative on False
LDB dst, src Load bit CALL dst Call procedure
LDC dst, src Load program memary CPIJE dst. src Compare, increment and jump on
LDE dst, src Load data memory equal
LDCD dst, src Load program memory and CPIJNE dst, src Compare, increment and jump on
decrement non-equal
LDED dst, src Load data memory and DJINZ r, dst Decrement and jump on Non-zero
decrement ENTER Enter
LDC! dst, src Load program memory and EXIT Exit
increment IRET Return from interrupt
LDEI dst, src Load datamemory and increment ~ JF cc, dst Jump on condition code
LDCPD dst, sre Load program memory with JP dst Jump unconditional
pre-decrement JR cc, dst Jump relative on condition code
LDEPD dst. src Load data memory with JR dst Jump relative unconditional
pre-decrement NEXT Next
LDCPI dst, src Load program memory with RET Return
pre-increment WFI Wait for interrupt
LDEPI dst, src Load data memory with Bit Manipulation Instructions
pre-increment BAND dst, src Bit AND
LDw dst. src Load word BCP dst, src Bit compare
POP dst Pap stack BITC dst Bit complement
POPUD dst, src Pop user stack (decrement) BITR dst Bit reset
POPUI dst, src Pop user stack (increment) BITS dst Bit set
PUSH st Push stack BOR dst, src Bt OR
PUSHUD dst, src Push user stack (decrement) BXOR dst, src Bit exclusive OR
PUSHUI dst, src Push user stack (increment) TCM dst, src Test complement under mask
™ dst, src Test under mask

Arithmetic Instructions
: ¢ on Rotate and Shift Iinstructions

ADC dst, src Add with carry RL dst Rotate left
ADD dst, sre Add RLC dst Rotate left through carry
CP dst, src Compare RR dst Rotate right
DA dst Decimal adjust RRC dst Rotate right through carry
DEC dst Decrement SRA dst Shit right arithmetic
DECW dst Decrement word SWAP dst Swap nibbles
DIy dst, src Divide
ING dst Increment CPU Control Instructions
INCW dst Increment word CCF Complement carry flag
MULT dst, src Muttiply DI Disable interrupts
SBC dst, src Subtract with carry El Enable interrupts
SUB dst, src Subtract NOP Do nothing
RCF Reset carry flag

. SBO Set bank 0
Logical instructions 381 Set bank 1
AND dst, src Logical AND SCF Set carry flag
COMm dst Compiement SRP sIC Set register pointers
OR dst, src Logical OR SRPO S1C Set register pointer zero
XOR dst, src Logical exclusive SRP1 sIc Set register pointer one

1002

INTERRUPTS

The Super8 interrupt structure contains 8 levels of interrupt,
16 vectors, and 27 sources.

Interrupt priority is assigned by level, controlled by the
Interrupt Priority register (IPR). Each level is masked (or
enabled) according to the bits in the Interrupt Mask register
(IMR), and the entire interrupt structure can be disabled by
clearing a bit in the System Mode register (R222).

The three major components of the interrupt structure are
sources, vectors, and levels. These are shown in Figure 10
and discussed in the following paragraphs.

Sources

A source is anything that generates an interrupt. This can be
internal or external to the Super8 MCU. internal sources are
hardwired to a particular vector and level, while external
sources can be assigned to various external gvents.
External interrupts are fafling-edge triggered.

Vectors

The 16 vectors are divided unequally among the eight
levels. For example, vector 12 belongs to level 2, while level
3 contains vectors 0, 2, 4, and 6.

The vector number is used to generate the address of a
particular interrupt servicing routine; therefore all interrupts
using the same vector must use the same interrupt handling
routine.

Levels

Levels provide the top level of priority assignment. While the
sources and vectors are hardwired within each level, the
priorities of the levels can be changed by using the Interrupt
Priority register (see Figure 8 for bit details).

If more than one interrupt source is active, the source from
the highest priority level will be serviced first. It both sources
are from the same level, the source with the lowest vector will
have priority. For example, if the UART Receive Data bit and
UART Parity Error bit are both active, the UART Parity Error
bit will be serviced first because it is vector 16, and UART
receive data is vector 20.

The levels are shown in Figure 12.

INTERRUPT SOURCES POL

LING VECTORS LEVELS

COUNTER 0 ZERO COUNT

12 IRQ2

EXTERNAL INTEARUPT (P2g)
EXTERNAL INTERRUPT (P27)

COUNTER 1 ZERO COUNT

1AQS5

EXTEANAL INTERRUPT (P36)
EXTERANAL INTERRUPT (P37)

HANDSHAKE CHANNELO |
EXTERNAL INTERRUPT (P24) |
EXTERNAL INTERRUPT (P25)

HANDSHAKE CHANNEL 1
EXTERNAL INTERRUPT (P34)
EXTERNAL INTERRUPT (P35)

28 IRQ4

30 IRQ7

[RRERURN

RESERVED

RESERVED

IRQ3

EXTERNAL INTERRUPT (P3)

EXTERNAL INTERRUPT (P23)

EXTERNAL INTERRUPT (P23)

IRQO

EXTERNAL INTERRUPT (P33)

UART RECEIVE OVERRUN
UART FRAMING ERROR

UART PARITY ERROR
UART WAKEUP DETECT

UART BREAK DETECT
UART CONTROL CHAR DETECT

UART RECEIVE DATA
EXTERNAL INTERRUPT (P3}

EXTERNAL INTERRUPT (P2g)

U

IRQ6

UART ZERQ COUNT
EXTERNAL INTERRUPT (P2y)

IRQ1

UART TRANSMIT DATA
EXTEANAL INTERRUFPT (P3,)

—]
S
T—
S
—
—

Figure 12. Interrupt

Levels and Vectors

1003

Enables
Interrupts can be enabled or disabled as foliows:

B interrupt enable/disable. The entire interrupt structure
can be enabled or disabled by setting bit 0 in the System
Mode register (R222).

B Level enable. Each level can be enabled or disabled by
setting the appropriate bit in the Interrupt Mask register
(R221).

m Level priority. The priority of each level can be controlled
by the values in the Interrupt Priority register (R255, Bank
0).

m Source enable/disable. Each interrupt source can be
enabled or disabled in the sources’ Mode and Control
register.

Service Routines

Before an interrupt request can be granted, a) interrupts
must be enabled, b) the tevel must be enabled, ¢) it must be
the highest priority interrupting level, d) it must be enabled at
the interrupting source, and e) it must have the highest
priority within the level.

If all this occurs, an interrupt request is granted.

The Super8 then enters an interrupt machine cycle that
completes the following sequence:

B It resets the Interrupt Enable bit to disable all subseguent
interrupts.

| [t saves the Program Counter and status flags on the
stack.

. branchesx to the address contained within the vector
location for the interrupt.

W It passes control to the interrupt servicing routine.

When the interrupt servicing routine has serviced the
interrupt, it should issue an interrupt return (IRET)
instruction. This restores the Program Counter and status
flags and sets the Interrupt Enable bit in the System Mode
register.

Fast Interrupt Processing

The Super8 provides a feature called fast interrupt
processing, which completes the interrupt servicing in 6
clock periods instead of the usual 22.

Two hardware registers support fast interrupts. The
Instruction Pointer (IP) holds the starting address of the
service routine, and saves the PC value when a fastinterrupt
occurs. A dedicated register, FLAG', saves the contents of
the FLAGS register when a fast interrupt occurs.

To use this feature, load the address of the service routine in
the Instruction Pointer, load the level number into the Fast
Interrupt Select field, and turn on the Fast Interrupt Enable
bit in the System Mode register.

When an interrupt occurs in the level selected for fast
interrupt processing, the following occurs:

m The contents of the Instruction Pointer and Program
Counter are swapped.

The contents of the Flag register are copied into FLAG’
The Fast Interrupt Status Bitin FLAGS is set.

The interrupt is serviced.

When IRET is issued after the interrupt service outline is
completed, the Instruction Pointer and Program Counter
are swapped again.

m The contents of FLAG’ are copied back into the Flag
register.

® The Fast Interrupt Status bit in FLAGS is cleared.

The interrupt servicing routine selected for fast processing
should be written so that the location after the IRET
instruction is the entry point the next time the (same) routine
is used.

Level or Edge Triggered

Because internal interrupt requests are levels and interrupt
requests from the outside are (usually) edges, the hardware
for external interrupts uses edge-triggered flip-flops to
convert the edges to Isvels.

The level-activated system requires that interrupt-serving
software perform some action to remove the interrupting
source. The action involved in serving the interrupt may
remove the source, or the software may have to actually
reset the flip-flops by writing to the corresponding Interrupt
Pending register.

STACK OPERATION

The Super8 architecture supports stack operations in the
register file or in data memory. Bit 1 in the external Memory
Timing register (R254 bank 0) selects between the two.

Register pair 216-217 forms the Stack Pointer used for alf
stack operations. R216 is the MSB and R217 is the LSB.

The Stack Pointer always points to data stored on the top of
the stack. The address is decremented prior to a PUSH and
incremented after a POP.

The stack is also used as a return stack for CALLs and
interrupts. During a CALL, the contents of the PC are saved
on the stack, to be restored later Interrupts cause the
contents of the PC and FLAGS to be saved on the stack, for
recovery by IRET when the interrupt is finished.

When the Super8 is configured for an internal stack (using
the register file), R217 contains the Stack Pointer. R216 may

be used as a general-purpose register, but its contents will
be changed if an overflow or underflow occurs as the result
of incrementing or decrementing the stack address during
normal stack operations.

User-Defined Stacks

The Super8 provides for user-defined stacks in both the
register file and program or data memory. These can be
made to increment or decrement on a push by the choice of
opcodes. For example, to implement a stack that grows
from low addresses to high addresses in the register file, use
PUSHUI and POPUD. For a stack that grows from high
addresses to low addresses in data memory, use LDE! for
pop and L.DEPD for push.

COUNTER/TIMERS

The Super8 has two identical independently programmable
16-bit counter/timers that can be cascaded to produce a
single 32-bit counter. They can be used to count external
events, or they can obtain their input internally. The internal
input is obtained by dividing the crystal frequency by four.

The counter/timers can be set to count up or down, by
software or external events. They can be set for single or
continuous cycle counting, and they can be set with a
bi-value option, where two preset time constants alternate in
loading the counter each time it reaches zero. This can be
used to produce an output pulse train with a variable duty
cycle.

The counter/timers can also be programmed to capture the
count value at an external event or generate an interrupt
whenever the count reaches zero. They can be turned on
and off in response to external events by using a gate and/or
a trigger option. The gate option enables counts only when
the gate line is Low: the trigger option turns on the counter
after a transient High. The gate and trigger options used
together cause the counter/timer to work in gate mode after
initially being triggered.

The control and status register bits for the counter/timers are
shown in Figure 5.

DMA

The Super8 features an on-chip Direct Memory Access
(DMA) channel to provide high bandwidth data
transmission capabilities. The DMA channel can be used by
the UART receiver, UART transmitter, or handshake channel
0. Data can be transferred between the peripheral and
contiguous locations in either the register file or external

data memory. A 16-bit count register determines the
number of transactions to be performed; an interrupt can be
generated when the count is exhausted. DMA transfers to or
from the register file require six CPU clock cycles; DMA
transters to or from external memory take ten CPU clock
cycles, excluding wait states.

1005

ABSOLUTE MAXIMUM RATINGS

Voltage on all pins with respect

toground ~0.3Vio +7.0V
Ambient Operating
TemperatureSee Ordering Information

Storage Temperature—65°Cto +150°C

Stresses greater than these may cause permanent damage to the device
This 1s a stress rating only; operation of the device under conditions more
severe than those listed for operating conditions may cause permanent
damage to the device. Exposure to absolute maximum ratings for
extended periods may also cause permanent damage.

STANDARD TEST CONDITIONS

Figure 14 shows the setup for standard test conditions. All
voltages are referenced to ground, and positive current
flows into the reference pin.

Standard conditions are:

W +4.75V< Voo < +5.25V
| GND = 0V

m 0°C < Ta< +70°C

FROM OUTPUT
UNDER TEST

400

150 pt I Iy

TEST LOAD (FOR ALL PINS}

Standard Test Load
DC CHARACTERISTICS
Symbol Parameter Min Max Unit Condition
VeH Clock Input High Voltage 38 Voo \ Driven by External Clock Generator
Ver Clock Input Low Voltage -03 0.8 v Driven by External Clock Generator
Vil Input High Voltage 2.2 Voo v
ViL Input Low Voltage -03 08 v
VRH Reset Input High Voitage 3.8 Vee v
VRL Reset Input Low Voltage -03 08 v
Vor Output High Voltage 2.4 vV lon = — 400 uA
VoL Output Low Voltage 0.4 v loL = +4.0mA
e input Leakage -10 10 pA
loL Output Leakage -10 10 pA
IR Reset Input Current ~50 WA
lce Vee Supply Current 320 mA

1006

INPUT HANDSHAKE TIMING

W D ‘e

_X
_— k{‘ - [+ I _ﬂ\‘:‘—@_. —_—

RDY OUT

DATA IN

]

Fuily Interlocked Mode Strobed Mode

AC CHARACTERISTICS (20 MHz)
Input Handshake

Number Symbol Parameter Min Max Notes"}
1 TsDI{DAV) Data In to Setup Time 0
2 TdDAVIf(RDY) DAV 4 Input to RDY 4 Delay 200 1
3 ThDIROY) Data In Hold Time from RDY 4 0
4 TwDAV DAV In Width 45
5 ThDI(DAV) Data In Hold Time from DAV ¢ 130
6 TdDAV(RDY) DAV 1 Input to RDY 1t Delay 100 2
7 TARDY#(DAV) RDY ¢ Output to DAV 1 Delay 0
NOTES:

1. Standard Test Load

2. Thistime assumes user program reads data before DAV Input goes high. RDY wik not go high before datais read.
1Times given are in ns.

*Times are preliminary and subject to change

1007

OUTPUT HANDSHAKE TIMING

DATA OUT _—_x DATA OUT X
—|Df— ® o -®
_ —_— i —_—
DAV OUT S DAV OUT &
@ - — @ -——
RDY IN / 3 SL ,l
Fully Interlocked Mode Strobed Mode
AC CHARACTERISTICS (12 MHz, 20 MH2)
Output Handshake
Number Symbol Parameter Min Max Notes*}
1 TdDO(DAV) Data Qut to DAV | Delay 90 1,2
2 TARDYr(DAV) RDY 1 Input to DAV ¥ Delay 110 1
3 TADAVOI(RDY) DAV { Qutput to RDY | Delay
4 TARDY{(DAY) RDY | Input to DAV * Delay 110 1
5 TdDAVOr(RDY) DAV 1 Output to RDY 4 Delay
6 TwDAVO DAV Cutput Width 150 2
NOTES
1 Sta~dard Test Load
2 Time qven is far zero value 1In Deskew Counter For nonzero value of nwhere n = 1,2,. .. 15 add 2 x nx TpC to the given time
1Times given are in ns
*Times are pre‘iminary and subject ‘o charge
AC CHARACTERISTICS (12MH2)
Read/Write
Normal Timing Extended Timing
Number Symboi Parameter Min Max Min Max Notes}*
1 TAA(AS) Address Valid 1o AS 1 Delay 35 15
2 TAAS(A) AS 1 to Address Float Delay 65 150
3 TdAS(DR) AS 1 to Read Data Required Valid 270 600 1
4 TWAS AS Low Width 65 150
5 TdA(DS) Address Fioat to DS ¥ 20 20
6a TwDS(Read) DS (Read) Low Width 225 470 1
6b TwDS(Write) DS (Write) Low Width 130 295 1
7 TdDS(DR) DS ¢ to Read Data Required Valid 180 420 1
8 ThDS(DR) Read Data to DS 1 Hold Time 0 0
] TdDS(A) DS * to Address Active Delay 50 135
10 TdDS(AS) DS tto AS | Delay 60 145
il TdDO(DS) Write Data Valid to DS (Write) ¢ Delay 38 115
12 TdAS(W) AS 1 to Wait Delay 220 600 2
13 ThDS(W) DS 1 to Wait Hold Time 0 0
14 TdRW(AS) R/W Valid to AS t Delay 50 135
NOTES:

1. WAIT states add 167 ns to these times.
2. Auto-wait states add 167 ns to this time.

1 Alltimes are in ns and are for 12 MHz input frequency.

* Timings are preliminary and subject to change.

1008

AC CHARACTERISTICS (20 MHz)

Read/Write
Nomal Timing Extended Timing
Number Symbol Parameter Min Max Min Max Notest*
1 TdA(AS) Address Valid to AS 1 Delay 10 50
2 TdAS(A) AS 110 Address Float Delay 35 85
3 TdAS(DR) AS 1 to Read Data Required Valid 140 335
4 TWAS AS Low Width 35 85
5 TdA(DS) Address Float to DS 4 0 0
6a TwDS(Read) DS (Read) Low Width 125 275
6b TwDS(Write) DS (Write) Low Width 65 165
7 TdDS(DR) DS ¢ to Read Data Required Valid 80 225
ThDS(DR) Read Data to DS * Hold Time 0 0
9 TdDS(A) DS # 1o Address Active Delay 20 70
10 TdDS(AS) DS 110 AS + Delay 30 80
11 TdDO(DS) Write Data Valid to DS (Write) ¢ Delay 10 50
12 TdAS(W) AS 1 to Wait Delay 90 335
13 ThDS(W) DS 1 to Wait Hold Time 0 0
14 TdRW(AS) R/W Valid to AS t Delay 20 70
15 TdDS(DW) DSt to Write Data Not Valid Delay 20 70
NOTES
1. WAIT states add 100 ns to these times
2. Auto-wait states add 100 ns to this time.
1 Alltimes are in ns and are for 20 MHz input frequency.
* Timings are preliminary and subject to change.
RIW X X
Fe——
Pongig gy, D X
i | | : @
PORT 1 X Ag-A w Do-07 OUT < Do-D7 N > our
i (2) 0 0
- ® i
D o=z o -
[13 \. ’ N f
[—®—
()— 1
waIT)r WAIT WINDOW (
@ @

External Memory Read and Write Timing

1009

ADDRESS QUT g‘ Ap-A1z

DATA IN X Dp-D7IN X

EPROM Read Timing

AC CHARACTERISTICS (20 MHz2)

EPROM Read Cycle
Number Symbol Parameter Min Max Notesi*
1 TdA(DR) Address Valid to Read Data Required
Valid 170 1
NOTES:

1. WAIT states add 167 ns to these times.
TAlltimes are in ns and are for 12 MHz input frequency.
*Timings are preliminary and subject to change.

1010

