

SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197 SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197

50/30/100-MHz Presettable Decade or Binary Counters/Latches

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/ load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197. SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197 50/30/100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

OCTOBER 1976-REVISED MARCH 1988

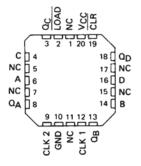
- Performs BCD, Bi-Quinary, or Binary Counting
- **Fully Programmable**
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output QA Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

	GUARA		TYPICAL
TYPES	CLOCK 1		POWER DISSIPATION
'196, '197	0-50 MHz	0-25 MHz	240 mW
'LS196, 'LS197	0-30 MHz	0-15 MHz	80 mW
'S196, 'S197	0-100 MHz	0-50 MHz	375 mW

description

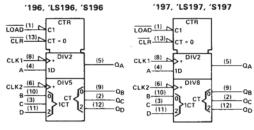
These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divideby-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.


These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmissionline effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54LS, and 54S circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, 74LS, and 74S circuits are characterized for operation from 0°C to 70°C.

SN54196, SN54LS196, SN54S196, SN54197, SN54LS197, SN54S197. . . . J OR W PACKAGE SN74196, SN74197 . . . N PACKAGE SN74LS196, SN74S196, SN74LS197, SN74S197 . . . D OR N PACKAGE (TOP VIEW)


LOAD (1	U142 vcc
QC □2	13 CLR
C □3	12 QD
A □4	ם בויו
Q _A □ 5	10 В
CLK 2 6	9 D QB
GND 🗖 7	8 CLK
_	

SN54LS196, SN54S196, SN54LS197, SN54S197 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols†

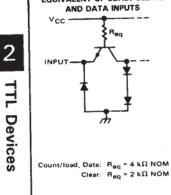
[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

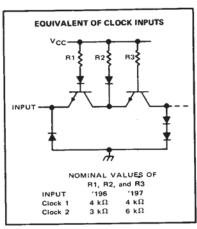
PRODUCTION DATA documents centain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

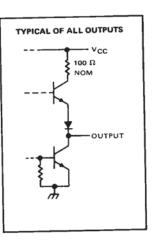
typical count configurations

'196, 'LS196, and 'S196 typical count configurations and function tables are the same as those for '176.

'197, 'LS197, and 'S197 typical count configurations and function tables are the same as those for '177.


logic diagrams


'196, 'LS196, and 'S196 logic diagrams are the same as those for '176.


'197, 'LS197, and 'S197 logic diagrams are the same as those for '177.

schematics of inputs and outputs

EQUIVALENT OF LOAD, CLEAR,

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

lute maximum ratings over opera	ting	j fr	00 -	air	te	mp	era	tuı	re ı	rar	nge	(L	ınl	ess	01	the	ırw	/is	e r	10	tec	d)					
Supply voltage, V _{CC} (see Note 1) .																											
Input voltage																											
Interemitter voltage (see Note 2) .																											
Operating free-air temperature range:																											
	SN	741	196	, SI	N7 4	119	7 C	ircı	uits				. ,										,		0 °	C 1	О
Storage temperature range																							-	65	°C	to	, 1

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the Clear and Load inputs.

recommended operating conditions

		SN54	196, SN	54197	SN74	196, SN7	4197	UNI
		MIN	NOM	MAX	MIN	NOM	MAX	UNI
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μ/
Low-level output current, IOL		1		16			16	m
	Clock-1 input	0		50	0		50	мн
Count frequency	Clock-2 input	0		25	0		25	1 Mr
	Clock-1 input	10			10			
	Clock-2 input	20			20			1 .
Pulse width, t _W	Clear	15			15			1 °
	Load	20			20			1
to a bold diese a deservation on	High-level data	tw(load)			tw(load)			Ι.
Input hold time, th (see Note 3)	Low-level data	tw(load)			tw(load)			n
In	High-level data	10			10			-
Input setup time, t _{su} (see Note 3)	Low-level data	15			15			1 "
Count enable time, ten (see Note 4)		20			20			n
Operating free-air temperature, TA		-55		125	0		70	°

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.

 4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN541	196, SN	74196			UNIT	
	PARAMETER		TEST CONDITION	Si	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8	<u>L</u> _		0.8	_ v
VIK	Input clamp voltage		V _{CC} = MIN, I ₁ = -12 m	A			-1.5			-1.5	
			V _{CC} = MIN, V _{1H} = 2 V	,	2.4	3.4		2.4	3.4		l v
VOH	High-level output voltage		V _{IL} = 0.8 V, I _{OH} =80								
			VCC = MIN, VIH = 2 V	Τ	0.2	0.4	1	0.2	0.4	١v	
VOL	Low-level output voltage		VIL = 0.8 V, IOL = 16				<u> </u>			!	
11	Input current at maximu	m input voltage	VCC = MAX, Vt = 5.5 V			1	_		1	mA	
		Data, Load					40	—		40	١.
Ιн	High-level input current	Clear, clock 1	V _{CC} = MAX, V _I = 2.4 V				80	<u> </u>		80	μA
-111		Clock 2	1				120	<u> </u>		80	↓_
		Data, Load					-1.6	↓_		-1.6	4
		Clear	V _{CC} = MAX, V _I = 0.4 \	,			-3.2	↓		-3.2	mA
IIL	Low-level input current	Clock 1	VCC = MAX, VI = 0.4 \				-4.8	$oldsymbol{ol}}}}}}}}}}}}}}}}}$		-4.8	4
		Clock 2					-6.4	\vdash		-3.2	+
			V _{CC} = MAX SN54' SN74'		-20		-57	-20		-57	-l mA
los	Short-circuit output curr	rent %			-18		-57	-18		-57	+
Icc	Supply current		V _{CC} = MAX, See Note	5	L	48	59	<u>L</u>	48	59	mA

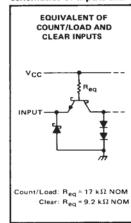
NOTE 5: I_{CC} is measured with all inputs grounded and all outputs open. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$. $^{\circ}$ Not more than one output should be shorted at a time. $^{\circ}$ QA outputs are tested at $I_{OL} = 16 \text{ mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.

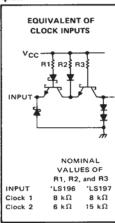
switching characteristics, VCC = 5 V, TA = 25°C

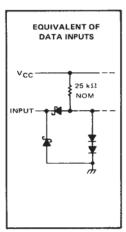
PARAMETER#	FROM	то	TEST CONDITIONS	1	N5419 N7419		-	N5419 N7419	- 1	UNIT
PARAMICIEN"	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	TYP	MAX	
f _{max}	Clock 1	QA		50	70		50	70		MHz
tPLH					7	12	L	7	12	ns
tPHL	Clock 1	Q _A			10	15	<u> </u>	10	15	
					12	18		12	18	ns
tPLH	Clock 2	QB		\vdash	14	21		14	21	115
tPHL					24	36		24	36	
tPLH	Clock 2	αc	$C_L = 15 pF$	-	28	42		28	42	ns
tPHL			$R_L = 400 \Omega$	-	14	21		36	54	
^t PLH	Clock 2	Q _D	See Note 6					42	63	ns
tPHL	O O O C C C	-0	00011010		12	18	├		24	₩
tPLH		QA, QB, QC, QD			16	24	<u> </u>	16		ns
tPHL	A, B, C, D	dA, dB, dC, dD	<u>α</u> _D		25	38		25	38	<u> </u>
tPLH					22	33		22	33	ns
	Load	Any			24	36		24	36	
tPHL		Any			25	37	1	25	37	ns
tPHL.	Clear	Arily								

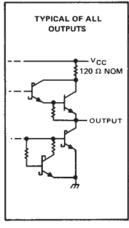
 $\#f_{max} = maximum count frequency.$

"Imax is infamiliar tools in the propagation delay time, low-to-high-level output.


tpH = propagation delay time, high-to-low-level output.


NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that testing f_{max}. $V_{1L} = 0.3 V.$




SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	V
Input voltage	V
Operating free-air temperature range: SN54LS196, SN54LS197 Circuits55°C to 125°C	С
SN74LS196, SN74LS197 Circuits 0 °C to 70 °C	С
Storage temperature range 65 °C to 150 °C	С

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS1	96, SN5	4LS197	SN74LS1	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
10н	High-level output current				400			-400	μΑ
ŀОL	Low-level output current				4			8	mΑ
	Course fragrensies	Clock-1 input	0		30	0		30	
	Count frequency	Clock-2 input	0		15	0		15	MH
		Clock-1 input	20			20			
t _w	Pulse width	Clock-2 input	30			30			
		Clear	15			15			ns
		Load	20			20		1	
	Januar hald since Jana Note 2)	High-level data	tw(load	d)		tw(loa	d)		
^t h	Input hold time, (see Note 3)	Low-level data	tw(load	d}		tw(loa	d)		ns
	to a to a to a time of a set black 21	High-level data	10			10	•		
^t su	Input setup time, (see Note 3)	Low-level data	15			· 15		$\neg \neg$	ns
		Clock 1	30			30			
^t enable	Count enable time, (see Note 4)	Clock 2	50			50			ns
TA	Operating free-air temperature	•	-55		125	0		70	°C

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which
 interval the count/load and clear inputs must both be high to ensure counting.

SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TES	T CONDITIONS	t		154LS1 154LS1	1		96 97	UNIT	
	PARAME	ien				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input ve	oltage				2			2			٧
111	Low-level input vo							0.7			0.8	V
	Input clamp volta		V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
	High-level output		V _{CC} = MIN,	V _{IH} = 2 V, , I _{OH} = -400 μA		2.5	3.4		2.7	3.4		٧
			VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	l .
VOL	Low-level output	voltage	VIL = VIL max		IOL = 8 mAf					0.35	0.5	·
		Data, Load	TE TE III A					0.1			0.1	1
11	Input current at maximum	Clear, clock 1	1					0.2			0,2	
		Clock 2 of 'LS196	V _{CC} = MAX,	VI = 5.5 V				0.4			0.4	1
	input voltage	Clock 2 of 'LS197						0.2			0.2	-
		Data, Load						20			20	4
	High-level	Clear, clock 1	1					40	_		40	4 <i>11</i> A
ΉН	input current	Clock 2 of 'LS196	VCC = MAX,	$V_1 = 2.7 \text{ V}$				80			80	4
		Clock 2 of 'LS197	1					40	L		40	1
		Data, Load						-0.4			-0.4	4
		Clear	1					-0.8	↓		8.0-	
IşL	Low-level	Clock 1	VCC = MAX,	$V_1 = 0.4 V$				-2.4			-2.4	-
-16	Input current	Clock 2 of 'LS196						-2.8	-		-2.8	→
		Clock 2 of 'LS197	1					-1.3	-		-1.3	+
los	Short-circuit out	put current §	VCC = MAX			-20		-100	+-		-100	+-
Icc			VCC = MAX,	See Note 5			16	27	1	16	2	7 m/

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER#	FROM	то	TEST CONDITIONS	1	54LS1			154LS1 174LS1		UNIT
PARAMETER"	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	TYP	MAX	
fmax	Clock 1	QA		30	40		30	40		MHz
tPLH					8	15		8_	15	ns
tPHL	Clock 1	Q _A			13	20		14	21	<u></u>
tPLH					16	24		12	19	ns
†PHL	Clock 2	O _B			22	33		23	35	-
tPLH					38	57		34	51	ns
tPHL	Clock 2	QC			41	62		42	63	-
tPLH			$R_L = 2 k\Omega$,		12	18		55	78	ns
	Clock 2	α _D	See Note 6		30	45		63	95] "s
tPHL					20	30		18	27	
tPLH .	A, B, C, D	aA, aB, ac aD		-	29	44	_	29	44	ns
tPHL				-	27	41	+	26	39	
tPLH	Load	Any		\vdash	30	45	-	30	45	ns
tPHL			\dashv				┼─	34	51	ns
tPHL.	Clear	Any			34_	51	1	-34	- 51	1 '''

[#]fmax = maximum count frequency.

[&]quot;Tmax ■ maximum count frequency.

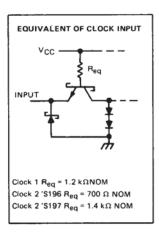
tpLH ■ propagation delay time, low-to-high-level output, tpHL ■ propagation delay time, high-to-low-level output.

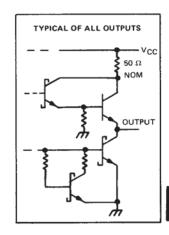
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that t_f ≤ 15 ns, t_f ≤ 6 ns, and V_{fef} = 1.3 V (as opposed to 1.5 V).

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Q_A outputs are tested at specified I_{OL} plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while maintain-


ing full fan-out capability.


NOTE 5. ICC is measured with all inputs grounded and all outputs open.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		. <i>.</i> 7 V
Operating free-air temperature ra	N54S196, SN54S197 Circuits	–55°C to 125°C
	N74S196, SN74S197 Circuits	0°C to 70°C
Storage temperature range		—65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	5196, SN5	45197	SN74	S196, SN7	4S197	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			1	mA
Low-level output current, IOL				20			20	mA
Olask forman	Clock-1 input	0		100	0		100	MHz
Clock frequency	Clock-2 input	0		50	0		50	MINZ
	Clock-1 input	5			5]
B. L	Clock-2 input	10			10]
Pulse width, t _W	Clear	30			30			ns
	Load	5			5]
land hald discount from National	High-level data	31			31			
Input hold time, th (see Note 3)	Low-level data	31			31			ns
to a second seco	High-level data	61			61			
Input setup time, t _{su} (see Note 3)	Low-level data	61			61			ns
Count enable time, ten (see Note 4)		12			12			ns
Operating free-air temperature, TA		-55		125	0		70	°c

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.

 4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS †			SN54S196, SN74S196			SN54S197, SN74S197			UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH					2			2			V
					1		0.8			8.0	V
VIL		V _{CC} = MIN,	I _I = -18 mA		 		-1.2			-1.2	V
VIK		V _{CC} = MIN,	V _{IH} = 2 V,	548	2.5	3.4		2.5	3.4		v
v_{OH}		V _{IL} = 0.8 V,	IOH = -1 mA	748	2.7	3.4		2.7	3.4		
VOL		V _{CC} = MIN, I _{OL} = 20 mAq		/IL = 0.8 V,			0.5			0.5	v
11		V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
I _{IH}	Clock 1, clock 2	V _{CC} = MAX,	V ₁ = 2.7 V				150 50			150 50	μΑ
	Data, Load Clear	-					- 0.75			-0.75	mA
IL	Clock 1	V _{CC} = MAX,	V _I = 0.5V				-8			-8	mA
	Clock 1						-10			6	mA
16	GOCK 2	V _{CC} = MAX			-30		-110	-30		-110	mA
IOSS				548	1	75	110		75	110	mA
Icc		V _{CC} = MAX,	See Note 5	748		75	120		75	120	

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 5: I_{CC} is measured with all input grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$

	(FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54S196, SN74S196			SN54S197 SN74S197			UNIT
PARAMETER#			TEST COMBITTORS	MIN	TYP	MAX	MIN	TYP	MAX	
fmax	Clock 1	Q _A		100	140		100	140		MHz
tPLH		Q _A			5 -	10		5	10	ns
tPHL	Clock 1				6	10		6	10	
	Clock 2	Ω _B	R_L = 280 Ω , C_L = 15 pF See Note 7		5	10		5	10	ns
tPLH					8	12		8	12	
tPHL					12	18		12	18	ns
tPLH	Clock 2	α _C			16	24		15	22	
tPHL				-	- 5	10	1	18	27	ns
^t PLH	Clock 2	Q _D				12	-	22	33	
tPHL						12	 	7	12	ns
tPLH	A,B,C,D	$\alpha_A, \alpha_B, \alpha_C, \alpha_D$					<u> </u>	12	18	
tPHL.	1,0,0,0				12_	18	-			\vdash
^t PLH	Land	Any			10	18	<u> </u>	10	18	ns
tPHL	Load			L	12	18	<u> </u>	12	18	
†PHL	Clear	Any			26	37		26	37	ns

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

All typical values are at V_{CC} = 5 V, T_A = 25°C.

Q_A outputs are tested at I_{OL} = 20 mA plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54S/74S loads.

[#]f_{max} = maximum count frequency.

tplH = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output.

NOTE 7: Load circuit, input conditions, and voltage waveforms are the same as those shown in Section 1