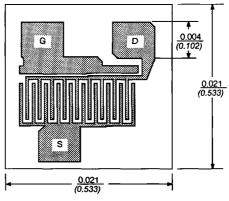


NZB SERIES DIE N-Channel JFETs

The NZB Series offers superb amplification characteristics. High-gain (> $10,000~\mu$ S), low noise (typically < $6~\text{nV}\sqrt{\text{Hz}}$) and low gate leakage (typically < 2~pA) are features of this series. Of special interest, however, is performance at high frequency. Even at 450 MHz, the NZB Series offers high power gain and low noise. Die are supplied with 100% visual sort to the criteria of MIL-STD-750C, Method 2072.

NZB1CHP*	NZB2CHP*	NZB3CHP*			
J308 SST308	U309 J309 SST309	U310 J310 SST310			
*Meets or excee	eds specification f	or all part			

^{*}Meets or exceeds specification for all part numbers listed below


For additional design information please consult the typical performance curves NZB.

DESIGNED FOR:

- VHF/UHF Amplifers
- Front End High Sensitivity Amplifiers
- Oscillators
- Mixers

FEATURES

- 16 dB at 100 MHz, Common Gate
- 11 dB at 450 MHz, Common Gate

Gate also backside contact

Nominal Thickness 0.009 inches 0.228 mm

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C Unless Otherwise Noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMITS	UNITS	
Gate-Drain Voltage	V_{GD}	-25	V	
Gate-Source Voltage	V _{GS}	-25	7	
Gate Current	I _G	20	mA	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C	

Rev. A (02/11/91) 4-113

4

NZB SERIES DIE

SPECIFICATIONS	SPECIFICATIONS ^a LIMITS										
			NZB1CHP		ICHP	NZB2CHP		NZB3CHP			
PARAMETER	ETER SYMBOL TEST CONDITIONS		TYPb	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
STATIC											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-35	-25		~25		-25		٧
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D = 1 nA			-1	-6	-1	-4	-2.5	-6	
Saturation Drain Current ^c	I _{DSS}	V _{DS} = 10 V,	V _{GS} = 0 V		12	60	12	30	24	60	mA
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		-2							nA
			T _A = 125°C	-0.8			<u> </u>				μΑ
Gate Operating Current	l _G	V _{DG} = 9 V, I	$V_{DG} = 9 \text{ V, } I_{D} = 10 \text{ mA}$								рA
Drain Cutoff Current	r _{DS(ON)}	$V_{GS} = 0 V$	I _D = 1 mA	35							Ω
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA	, V _{DS} = 0 V	0.7							٧
DYNAMIC			<u> </u>		-						
Common-Source Forward Transconductance	9ts	V _{DS} = 10 V, I _D = 10 mA f = 1 kHz		14							mS
Common-Source Output Conductance	g _{os}	1		110							μS
Common-Source Input Capacitance	C _{gs}			4							
Common-Source Reverse Transfer Capacitance	C _{gd}	$V_{DS} = 10 \text{ V}, V_{GS} = -10 \text{ V}$ f = 1 MHz		1.9							рF
Equivalent Input Noise Voltage	ē _n	$V_{DS} = 10 \text{ V, } I_{D} = 10 \text{ mA}$ f = 100 Hz		6							nV/ √Hz
HIGH FREQUENCY											
Common-Gate Forward Transconductance	9tg		f = 105 MHz	15		_					
Common-Gate Output Conductance	g _{og}	$V_{DS} = 10 \text{ V}$ $I_D = 10 \text{ mA}$	f = 105 MHz	0.16							mS
Common-Gate Power Gain ^d	G _{pg}		f = 105 MHz	16							de
Noise Figure	NF	-	f = 450 MHz f = 105 MHz f = 450 MHz	11.5 1.5 2.7				ļ			dB

- NOTES: a. $T_A=25\,^{\circ}\text{C}$ unless otherwise noted. b. For design aid only, not subject to production testing.
- c. Pulse test; PW = 300 μ S, duty cycle \leq 3%. d. Gain (G_{pg}) measured at optimum input noise match.