T-46-23-12

January 1991

MATRA M H S

DATA SHEET

M-65864

8,192 x 8 STATIC RAM

FEATURES

- BICMOS FOR OPTIMUM SPEED/POWER
- HIGH SPEED
 - 12 ns
- LOW ACTIVE POWER
 - -600 mW

- LOW STANDBY POWER
- − 200 mW
 TTL-COMPATIBLE INPUTS AND OUTPUTS
- CAPABLE OF WITHSTANDING GREATER THAN
 2001V ELECTROSTATIC DISCHARGE

DESCRIPTION

The M-65864 is a high-performance BiCMOS static RAM organized as 8,192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE₁), an active HIGH chip enable (CE₂), and active LOW output enable (OE) and three-state drivers. Both devices have a power-down feature (CE₁) that reduces the power consumption by 67 % when deselected. An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When CE₁ and WE inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the

memory location addressed by (A₀ through A₁₂). Reading the device is accomplished by <u>selecting</u> the device and enabling the out<u>puts</u>, CE₁ and OE active LOW, CE₂ active HIGH, while WE remains HIGH. Under these conditions, the contents of the location addressed by the information on the address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

PACKAGES

DIP / SOJ

 4

MATRA M H S

M-65864

BLOCK DIAGRAM

T-46-23-12

SELECTION GUIDE

		M-65864-12	M-65864-15
Maximum Access Time (ns)	12	15	
Maximum Operating	Commercial	140	135
Current (mA)	Military		145
Maximun Standby	Commercial	40	40
Current (mA)	Military		50

MAXIMUM RATING

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested)

Storage Temperature – 65°C to + 150°C

Ambient Temperature with

Power Applied - 55°C to + 125°C

Supply Voltage to

Ground Potential – 0. 5V to + 7. 0V

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	0°C to + 70°C	5 V ± 10 %
Military ^[2]	- 55°C to + 125°C	5 V ± 10 %

MATRA M H S

M-65864

ELECTRICAL CHARACTERISTICS over the operating range

		TEST CONDITIONS		M-65864-12		M-65864-15		
PARAMETERS	DESCRIPTION			MIN.	MAX.	MIN.	MAX.	UNITS
V _{OH}	Output HIGH	Vcc = Min. I _{OH} = 4.0 mA				2.4		V
	Voltage	$I_{OH} = -2.0 \text{ mA}$	Mil	2.4		2.4		
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4	٧
VIH	Input HIGH Level			2.2	Vcc	2.2	Vcc	٧
V _{IL}	Input LOW Voltage [1]			- 0.5	0.8	- 0.5	0.8	٧
I _{IX}	Input Load Current	GND ≤ V _I ≤ V _{CC}		- 10	+ 10	- 10	+ 10	μА
l _{oz}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled		10	+ 10	- 10	+ 10	μА
lcc	V _{CC} Operating	$V_{CC} = Max., I_{OUT} = 0 mA$	Com'l		140		135	mA
	Supply Current	f = f max.	Mil				145	mA
I _{SB}	CE ₁	CE ₁ ≥ V _{IH}	Com'		40		40	mA
	Power-Down Current		Mil				50	mA

CAPACITANCE [3]

PARAMETERS	DESCRIPTION	TEST CONDITIONS	MAX. ^[4]	UNITS
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz	5	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0 V	7	pF

- Notes : 1, V_{IL} (min) = -3.0 V for pulse width < 20 ns. 2. T_A is the "instant on" case temperature.

 - 3. Tested initially and after any design on process changes that may affect these parameters. 4. For all packages except CERDIP, which has maximums of $C_N = 8$ pF, $C_{OUT} = 9$ pF.

AC TEST LOADS AND WAVEFORMS

293-4

MATRA M H S

M-65864 .

T-46-23-12

SWITCHING CHARACTERITICS Over the Operating Range [5]

PARAMETERS	DESCRIPTION	M-65	864-12	M-65864-15		LINITO
FARAMETERS	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	UNITS
READ CYCLE						
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{oha}	Data Hold from Address Change	3		3		ns
t _{ACE1}	CE ₁ LOW to Data Valid		12		15	ns
t _{AE2}	CE ₂ HIGH to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z	2		3		ns
t _{HZOE}	OE HIGH to High Z [6]		8		8	ns
t _{LZCE1}	CE ₁ to Low Z ^[7]	3		3		ns
t _{LZCE2}	CE ₂ HIGH to Low Z [7]	3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z ^[5, 6] CE ₂ LOW to High Z		7		8	ns
WRITE CYCLE					•	
twc	Write cycle Time	12		15		ns
t _{SCE1}	CE ₁ LOW to Write End	8		10		ns
tsce2	CE ₂ HIGH to Write End	8		10		ns
t _{AW}	Address Set-Up to Write End	8		10		ns
t _{HA}	Address Hold From Write End	0		0		ns
tsa	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	8		10		ns
t _{SD}	Data Set-Up to Write End	6.5		. 8		ns
t _{HD}	Data Hold from Write End	0 0			ns	
t _{HZWE}	WE LOW to High Z [5]		7		7	ns
t _{LZWE}	WE HIGH to Low Z	3		3		ns

Notes: 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified lou/loss, and CL = 20 pF.

6. trzce, trzce, and trzwe are specified with CL = 5 pF as in part (b) of AC Test loads. Transition is measured ± 200 mV from steady-state voltage.

8. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HiGH, and WE LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. All three signals must be active to initiate a write, and either signal can terminate a write by going inactive.

294-4

T-46-23-12

Notes: 9. Device is continuously selected. OE, CE₁ = V_{IL}. CE₂ = V_{B1}.

10. Address valid prior to or coincident with CE transition LOW.

11. WE is HIGH for read cycle.

12. Data I/O is HIGH impedance if OE = V_{IH}

13. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

SWITCHING WAVEFORMS (continued)

Notes: 9. WE is HIGH for read cycle.

WE IS HIGH for read cycle.
 Device is continuously selected, CE = V_{t.} (65889 OE = V_{t.} also).
 Address walld prior to or coincident with CE transition low.
 65889 only: Data I/O will be high impedance if OE = V_H.
 If CE goes HIGH simultaneously with WE HIGH, the output remain in a high-impedance state.

TRUTH TABLE

CE ₁	CE2	WE	ΟE	INPUTS/ OUTPUTS	MODE
Н	Х	х	х	High Z	Deselect/ Power-Down
L.	L	X	Χ	High Z	Deselect
L.	Н	Н	L	Data Out	Read
L.	Н	L	Χ	Data In	Write
L	Н	Н	Н	High Z	Deselec

ORDERING INFORMATION

