PhotoMOS
 RELAYS

2. Tape and reel

The device comes standard in a tape and reel ($1,000 \mathrm{pcs}$./reel) to facilitate automatic insertion machines.

Applicable for 1 Form A 1 Form B use as well as two independent 1 Form A and 1 Form B use
Controls low-level analog signals PhotoMOS relays feature extremely low closed-circuit offset voltage to enable control of low-level analog signals without distortion
5. Low-level off state leakage current

TYPICAL APPLICATIONS

- Telephones
- Measuring instruments
- Computer
- Industrial robots
- High-speed inspection machines.

TYPES

1. AC/DC type

Output rating *		Part No.		Packing quantity in tape and reel
Load voltage	Load current	Picked from the $1 / 2 / 3 / 4-$ pin side	Picked from the 5/6/7/8-pin side	
350 V	100 mA	AQW610SX	AQW610SZ	1,000 pcs.

*Indicate the peak AC and DC values.
Notes: (1) Tape package is the standard packing style. Also available in tube. (Part No. suffix " X " or "Z" is not needed when ordering; Tube: 50 pcs.; Case: 1,000 pcs.)
(2) For space reasons, the package type indicator " X " and " Z " are omitted from the seal.

RATING

1. AC/DC type

1. Absolute maximum ratings (Ambient temperature : $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item		Symbol	AQW610S	Remarks
Input	LED forward current	$I_{\text {F }}$	50 mA	
	LED reverse voltage	$V_{\text {R }}$	3 V	
	Peak forward current	Ifp	1 A	$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation	Pin	75 mW	
Output	Load voltage (peak AC)	VL	350 V	
	Continuous load current	IL	0.1 A (0.13 A)	Peak AC, DC (): in case of using only 1 a or 1 b , 1 channel
	Peak load current	$\mathrm{I}_{\text {peak }}$	0.3 A	100 ms (1 shot), VL = DC
	Power dissipation	Pout	600 mW	
Total power dissipation		$\mathrm{P}_{\text {T }}$	650 mW	
I/O isolation voltage		$\mathrm{V}_{\text {iso }}$	1,500 V AC	
Temperature limits	Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	Non-condensing at low temperatures
	Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	

AQW610S

2. Electrical characteristics (Ambient temperature : $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQW610S	Condition
Input	LED operate current	Typical	Ifon	0.9 mA	$\mathrm{L}=$ Max.
		Maximum		3 mA	
	LED reverse current	Minimum	IFoff	0.4 mA	$\mathrm{L}=$ Max.
		Typical		0.8 mA	
	LED dropout voltage	Typical	V_{F}	$1.14 \mathrm{~V}(1.25 \mathrm{~V}$ at $\mathrm{IF}=50 \mathrm{~mA})$	$\mathrm{IF}=5 \mathrm{~mA}$
		Maximum		1.5 V	
Output	On resistance	Typical	Ron	18Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \text { (N.O.) If= } 0 \mathrm{~mA} \text { (N.C.) } \\ & \mathrm{L}=\text { Max. } \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum		25Ω	
	Off state leakage current	Maximum	leak	$1 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{IF}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \mathrm{IF}=5 \mathrm{~mA} \text { (N.C.) } \\ & \mathrm{V}=\mathrm{Max} . \end{aligned}$
Transfer characteristics	Operate time*	Typical	Ton	0.28 ms (N.O.), 0.52 ms (N.C.)	$\begin{aligned} & \mathrm{IF}=0 \mathrm{~mA} \rightarrow 5 \mathrm{~mA} \\ & \mathrm{IL}=\text { Max. } \end{aligned}$
		Maximum		1.0 ms	
	Reverse time*	Typical	Toff	0.04 ms (N.O.), 0.23 ms (N.C.)	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \rightarrow 0 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \end{aligned}$
		Maximum		1.0 ms	
	I/O capacitance	Typical	Ciso	0.8 pF	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{B}}=0 \end{aligned}$
		Maximum		1.5 pF	
	Initial I/O isolation resistance	Minimum	Riso	1,000 M Ω	500 V DC

Note: Recommendable LED forward current IF = 5 mA .
*Operate/Reverse time

REFERENCE DATA

1. Load current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$

2. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 5 and 6,
7 and 8; LED current: 5 mA ; Load voltage: Max. (DC);
Continuous load current: Max. (DC)

3. Opearte time vs. ambient temperature characteristics
LED current: 5 mA ;
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

4. Reverse time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: Max. (DC);
Continuous load current: Max. (DC)

5. LED dropout voltage vs. ambient temperature characteristics
LED current: 5 to 50 mA

6. LED forward current vs. operate time characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7. LED operate current vs. ambient temperature characteristics
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

8. Voltage vs. current characteristics of output at MOS portion
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

9. LED forward current vs. reverse time characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10. LED Reverse current vs. ambient temperature characteristics
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

11. Off state leakage current

Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Applied voltage vs. output capacitance characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Frequency: 1 MHz;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

