Epoxy encapsulated Meets or exceeds MIL-D-23859C T2 FUNCTIONAL DESCRIPTION The 1516-series device is a fixed, single-input, five-

 $T_D/T_R = 3$

FEATURES

Delays to 200ns

Low profile

SERIES 1516)

5 taps of equal delay increment

I ne 1516-series device is a fixed, single-input, fiveoutput, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 (T_D) and the characteristic impedance of the line (*Z*) are determined by the dash number. The rise time (T_R) of the line is 30% of T_D, and the 3dB bandwidth is given by 1.05 / T_D. The device is available in a 8-pin DIP (1516) or a 8-pin SMD (1516S), and a wide range of pinouts may be specified.

5-TAP DIP/SMD DELAY LINE

Part numbers are constructed according to the scheme shown at right. For example, 1516C-101-500B is a 290 mil DIP, 100ns, 50Ω delay line with pinout code B. Similarly, 1516SB-151-501 is a 240 mil SMD, 150ns, 500Ω delay line with standard pinout.

SERIES SPECIFICATIONS

- Dielectric breakdown: 50 Vdc
- Distortion @ output: 10% max.
- Operating temperature: -55°C to +125°C
- Storage temperature: -55°C to +125°C
- Temperature coefficient: 100 PPM/°C

PINOUT CODES

CODE	IN	T1	T2	T3	T4	T5	GND
STD	2	3	4	5	6	7	1,8
Α	1	2	3	4	6	7	5,8
В	1	7	3	6	4	5	8
С	7	2	6	3	5	4	1,8
D	1	2	7	3	6	4	5,8
E	1	7	2	6	3	4	5,8

MOUNTING HEIGHT CODES

CODE	HEIGHT (MAX)	DIP	SMD
А	0.187	Yes	No
В	0.240	Yes	Yes
С	0.290	Yes	Yes

Note: Codes A and B are not available for all values of T_D Contact technical staff for details

PACKAGES

delav

devičes

GND	Ч1	─ 8	Ш	GND
IN	Q 2	7		T5
T1	□3	6		T4
T2	□4	5	Þ	Т3

IN Signal Input T1-T5 Tap Outputs GND Ground

Note: Standard pinout shown Other pinouts available

PART NUMBER CONSTRUCTION

1516(S)m - xxx - zzz p

MOUNTING HEIGHT CODE See Table

DELAY TIME

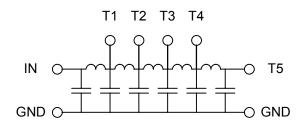
Expressed in nanoseconds (ns) First two digits are significant figures — Last digit specifies # of zeros to follow

IMPEDANCE

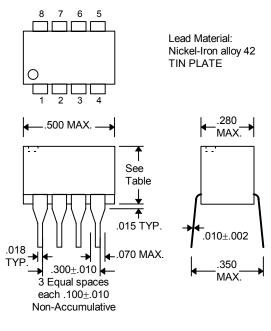
Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow

PINOUT CODE

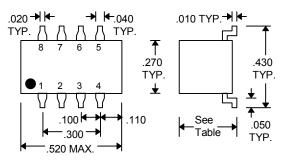
See Table-Omit for STD pinout


T_D T Ть **ATTENUATION (%) TYPICAL** Ζ=50Ω Ζ=100Ω Ζ=200Ω Ζ=300Ω Ζ=500Ω (ns) (ns) (ns) 5 1.0 3.0 N/A N/A N/A N/A 10 2.0 4.0 3 5 5 N/A N/A 15 3.0 3 5 5.0 5 N/A N/A 3 20 4.0 6.0 5 5 5 N/A 25 3 5 5 5 5.0 7.0 7 30 10.0 3 6.0 5 5 5 7 40 8.0 13.0 3 5 5 5 7 50 10.0 15.0 3 5 5 7 7 60 12.0 20.0 3 3 5 6 7 7 8 75 15.0 25.0 5 6 8 80 26.0 4 5 8 16.0 6 7 100 20.0 30.0 4 5 6 8 110 22.0 4 8 32.0 5 7 6 125 25.0 40.0 4 6 7 8 5 5 10 N/A 150 30.0 10 50.0 8 180 36.0 60.0 N/A 8 10 10 200 50.0 70.0 N/A 8 10 12 12

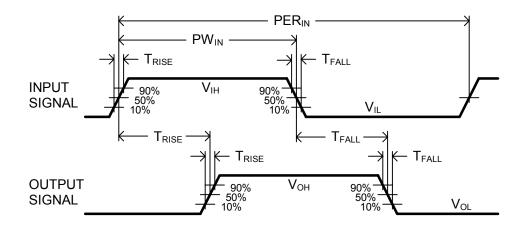
Notes: T_1 represents nominal tap-to-tap delay increment Tolerance on $T_0 = \pm 5\%$ or $\pm 2ns$, whichever is greater Tolerance on $T_1 = \pm 5\%$ or $\pm 1ns$, whichever is greater "N/A" indicates that delay is not available at this Z


©2008 Data Delay Devices

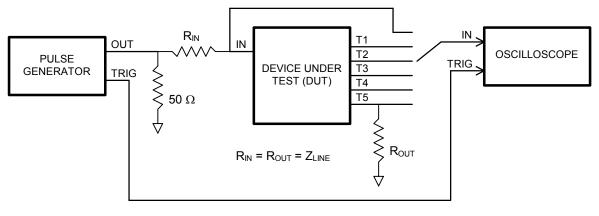
DELAY SPECIFICATIONS


FUNCTIONAL DIAGRAM

PACKAGE DIMENSIONS


1516S-xx (Gull-Wing)

PASSIVE DELAY LINE TEST SPECIFICATIONS


TEST CONDITIONS

INPUT:		OUTPUT:		
Ambient Temperature:	$25^{\circ}C \pm 3^{\circ}C$	R _{load} :	10MΩ	
Input Pulse:	High = 3.0V typical	C _{load} :	10pf	
	Low = 0.0V typical	Threshold:	50% (Rising & Falling)	
Source Impedance:	50Ω Max.			
Rise/Fall Time:	3.0 ns Max. (measured			
	at 10% and 90% levels)			
Pulse Width (T _D <= 75ns):	PW _{IN} = 100ns			
(=)	PER _{IN} = 1000ns			
Pulse Width (T _D > 75ns):	$PW_{IN} = 2 \times T_D$			
Period $(T_D > 75ns)$:	PER _{IN} = 10 x T _D			

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup