

1.0 Features

- Five phase-locked loops (PLLs) generate five independent clocks from one reference clock
- Three PLL frequencies can be changed via logic level on the SEL input
- Clock outputs can be tristated to facilitate circuit board testing
- Small circuit board footprint (16-pin 0.150" SOIC)
- Custom frequency selections available contact your local AMI Sales Representative for more information

2.0 Description

The FS6017 is a monolithic CMOS clock generator IC designed to minimize cost and component count in network computer applications.

Five internal high-performance phase-locked loops use an on-chip crystal oscillator as a reference for generation of various frequencies. The PLL-generated clock frequencies are related to the crystal oscillator frequency by exact ratios.

3.0 Applications

- Frequency Synthesis
- Network Computer (NC), Fast Network Computer, and Thin Client Applications

Figure 1: Pin Configuration

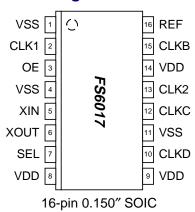
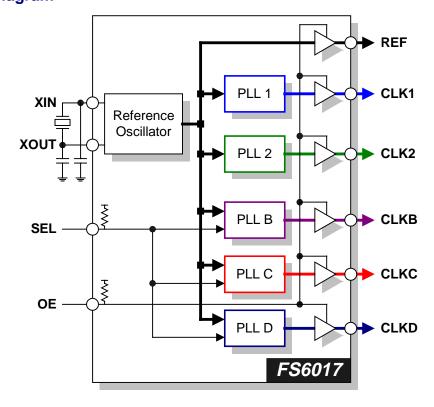



Figure 2: Block Diagram

FS6017-02

Five PLL Clock Generator IC

November 1998

Table 1: Pin Descriptions

Key: Al = Analog Input; AO = Analog Output; DI = Digital Input; DI = Input with Internal Pull-Up; DI_D = Input with Internal Pull-Down; DIO = Digital Input/Output; DI = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin

PIN	TYPE	NAME	DESCRIPTION			
1	Р	VSS	Crystal Oscillator Ground			
2	DO	CLK1	PLL 1 Clock Output			
3	DI ^U	OE	Output Enable			
4	Р	VSS	Ground			
5	Al	XIN	Crystal Oscillator Feedback			
6	AO	XOUT	Crystal Oscillator Drive			
7	DI ^U	SEL	Output Frequency Select			
8	Р	VDD	Power Supply (+5V)			
9	Р	VDD	Crystal Oscillator Power (+5V)			
10	DO	CLKD	PLL D Clock Output			
11	Р	VSS	Ground			
12	DO	CLKC	PLL C Clock Output			
13	DO	CLK2	PLL 2 Clock Output			
14	Р	VDD	Power Supply (+5V)			
15	DO	CLKB	PLL B Clock Output			
16	DO	REF	Reference Oscillator Output			

4.0 Functional Block Description

4.1 Phase-Locked Loops (PLLs)

Each one of the five on-chip PLLs in the FS6017 is a standard frequency- and phase-locked loop architecture. Each PLL multiplies the reference oscillator to the desired frequency by a ratio of integers. The frequency multiplication is exact.

4.2 Frequency Select (SEL)

Three of the PLLs can switch between one of two possible output frequencies depending on the logic state of the SEL pin. The clock outputs that can be changed are the CLKB, CLKC, and CLKD outputs. Note that the transitions are not glitch-free.

The SEL pin defaults to a logic-high through an internal pull-up.

Table 2: Output Frequencies

OUTPUT CLOCK	SEL PIN	FREQUENCY (MHz)
CLK1	-	11.2896
CLK2	-	32.0000
CLKB	1	56.0000
CLNB	0	64.0000
CLKC	1	40.0000
CLKC	0	48.0000
CLKD	1	80.0000
CLND	0	3.6864

NOTE: Custom frequencies available – contact AMI for more information

4.3 Output Tristate Control (OE)

All clock outputs of the FS6017 may be tristated to facilitate circuit board testing. When the output enable (OE) pin is low, all outputs are placed in a high-impedance state and the outputs can neither drive nor load connected lines.

By default, all the clock outputs are enabled through an internal pull-up on the OE pin.

11.20.98

4.4 Crystal Oscillator

An on-board 24MHz crystal oscillator provides the reference frequency for all five PLLs. Loading capacitors are left external to allow the user to vary crystal types and frequencies.

The oscillator operates the crystal in a parallel-resonant mode. Series-resonant crystals can also be used with the FS6017, although the oscillation frequency will be slightly higher than the frequency that is stamped on the can (typically 0.025 to 0.05%)

Since the entire operation of the FS6017 depends on having a stable reference frequency, the crystal should be mounted as close as possible to the package. Take care to avoid routing clock lines near the crystal and, if possible, ground the crystal can to the ground plane.

The output of the crystal oscillator is directly observable at the REF output.

5.0 Electrical Specifications

Table 3: Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only, and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality, and reliability.

PARAMETER	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage, dc (V _{SS} = ground)	V_{DD}	V _{SS} -0.5	7	V
Input Voltage, dc	Vı	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Input Clamp Current, dc ($V_I < 0$ or $V_I > V_{DD}$)	I _{IK}	-50	50	mA
Output Clamp Current, dc (V _I < 0 or V _I > V _{DD})	I _{OK}	-50	50	mA
Storage Temperature Range (non-condensing)	Ts	-65	150	°C
Ambient Temperature Range, Under Bias	T _A	-55	125	°C
Junction Temperature	TJ		150	°C
Lead Temperature (soldering, 10s)			260	°C
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge.

Table 4: Operating Conditions

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Supply Voltage	V_{DD}	5V ± 10%	4.5	5	5.5	V
Ambient Operating Temperature Range	T _A		0		70	°C
Output Load Capacitance	CL				15	pF
Crystal Resonator Frequency	f _{XIN}		5		27	MHz
Crystal Resonator Load Capacitance	C _{xtal}	Assumes 6pF external load capacitance typically achieved with 12pF from XIN to VSS and 12pF from XOUT to VSS		15		pF
Crystal Resonator Motional Capacitance	C_{MOT}			25		fF

FS6017-02

Five PLL Clock Generator IC

November 1998

Table 5: DC Electrical Specifications

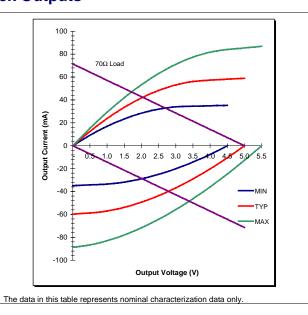
Unless otherwise stated, $V_{DD} = 5.0V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0^{\circ}\text{C}$ to 70°C . Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical. Negative currents indicate current flows out of the device.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Overall	*				<u>'</u>	
Supply Current, Dynamic, with Loaded Outputs *	I _{DD}	OE = SEL = 5.0V		80		mA
Supply Current, Dynamic, with Tristated Outputs	I _{DD}	OE = 0V		55	80	mA
Control Inputs (SEL, OE)						
High-Level Input Voltage	V_{IH}		2.4		V _{DD} +0.3	V
Low-Level Input Voltage	V _{IL}		V _{SS} -0.3		0.8	V
High-Level Input Current	I _{IH}		-1		1	μΑ
Low-Level Input Current (pull-up)	I _{IL}	Outputs off; $V_{IL} = 0V$, $V_{DD} = 5.5V$	2	3.8	10	μΑ
Crystal Oscillator Feedback (XIN)						
Threshold Bias Voltage	V_{TH}		1.5	2.4	3.5	V
High-Level Input Current	I _{IH}	$V_{DD} = V_I = 5.5V$	55	83	100	μΑ
Low-Level Input Current	I _{IL}	$V_{DD} = 5.5V; V_{I} = 0V$	-55	-81	-100	μΑ
Crystal Loading Capacitance *	$C_{L(xtal)}$	As seen by an external crystal connected to XIN and XOUT (see Table 4)		9		pF
Input Loading Capacitance *	C _{L(XIN)}	As seen by an external clock driver on XIN; XOUT unconnected		18		pF
Crystal Oscillator Drive (XOUT)						
High-Level Output Source Current	I _{OH}	$V_{DD} = 5.5V, V_{O} = 0V$	-10	-19	-33	mA
Low-Level Output Sink Current	I _{OL}	$V_{DD} = V_O = 5.5V$	10	26	33	mA
Clock Outputs (CLK1, CLK2, CLKB, CLKC	, CLKD, REF)					
High-Level Output Source Current	I _{OH}	V _O = 2.4V	-26	-37		mA
Low-Level Output Sink Current	I _{OL}	V _O = 0.4V	7	9.2		mA
Output Impedance	Z _{OH}	$V_O = 0.5V_{DD}$; output driving high		57		Ω
Output impedance	Z _{OL}	$V_O = 0.5V_{DD}$; output driving low		52		22
Tristate Output Current	Iz		-10		10	μΑ
Short Circuit Source Current *	I _{SCH}	V _O = 0V; shorted for 30s, max.		-50		mA
Short Circuit Sink Current *	I _{SCL}	V _O = 5V; shorted for 30s, max.		55		mA

Table 6: AC Timing Specifications

Unless otherwise stated, $V_{DD} = 5.0V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0^{\circ}C$ to $70^{\circ}C$. Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION CLOCK (MHz)		MIN.	TYP.	MAX.	UNITS
Clock Output (REF)							
Duty Cycle *		From rising edge to rising edge at 2.5V 24.000		50		54	%
Jitter, Long Term $(\sigma_y^2(\tau))^*$	$t_{j(LT)}$	From rising edge to 1st rising edge after 500 μ s at 2.5V, C _L = 15pF, all PLLs active	24.000		1000		ps
Jitter, Period (peak-peak) *	$t_{j(\DeltaP)}$	From rising edge to the next rising edge at 2.5V, $C_L = 15pF$, all PLLs active	24.000		1440		ps
Rise Time *	t _r	$V_{O} = 0.5V$ to 4.5V; $C_{L} = 15pF$			3.1		ns
Fall Time *	t _f	$V_0 = 4.5V$ to 0.5V; $C_L = 15pF$			1.2		ns
Clock Output (CLK1)							
Duty Cycle *		From rising edge to rising edge at 2.5V	32.000	46		50	%
Jitter, Long Term $(\sigma_y^2(\tau))^*$	t _{j(LT)}	From rising edge to 1st rising edge after 500 μ s at 2.5V, C _L = 15pF, all PLLs active	32.000		490		ps
Jitter, Period (peak-peak) *	$t_{j(\Delta P)}$	From rising edge to the next rising edge at 2.5V, $C_L = 15pF$, all PLLs active	32.000		1690		ps
Rise Time *	t _r	$V_0 = 0.5V$ to 4.5V; $C_L = 15pF$			3.2		ns
Fall Time *	t _f	$V_O = 4.5V$ to 0.5V; $C_L = 15pF$		2.0		ns	
Clock Stabilization Time *	t _{STB}	From power-up to output active		1.3		ms	
Clock Output (CLK2)							
Duty Cycle *		From rising edge to rising edge at 2.5V	11.289	43		47	%
Jitter, Long Term $(\sigma_y^2(\tau))^*$	$t_{j(LT)}$	From rising edge to 1st rising edge after 500 μ s at 2.5V, C_L = 15pF, all PLLs active	11.289		840		ps
Jitter, Period (peak-peak) *	t _{j(∆P)}	From rising edge to the next rising edge at 2.5V, C_L = 15pF, all PLLs active	11.289		2900		ps
Rise Time *	t _r	V _O = 0.5V to 4.5V; C _L = 15pF			4.0		ns
Fall Time *	t _f	$V_{O} = 4.5 V$ to 0.5V; $C_{L} = 15 pF$			2.1		ns
Clock Stabilization Time *	t _{STB}	From power-up to output active			1.3		ms
Clock Output (CLKB)							
Duty Cyclo *		From riging odge to riging odge at 2 51/	56.000	39		43	%
Duty Cycle *		From rising edge to rising edge at 2.5V	64.000	38		42	70
Jitter, Long Term $(\sigma_v^2(\tau))^*$	t _{i(LT)}	From rising edge to 1st rising edge after	56.000		1350		
omer, Long Term (by (t))	Y(L1)	500μs at 2.5V, C_L = 15pF, all PLLs active	64.000		1760		ps
		From rising edge to the next rising edge at	56.000		1990		
Jitter, Period (peak-peak) *	$t_{j(\DeltaP)}$				1950		ps
Rise Time *	t _r	$V_{O} = 0.5V$ to 4.5V; $C_{L} = 15pF$			3.1		ns
Fall Time *	t _f	$V_0 = 4.5V \text{ to } 0.5V; C_L = 15pF$			1.6		ns
Clock Stabilization Time *	t _{STB}	From power-up to output active			1.5		ms


Table 7: AC Timing Specifications, continued

Unless otherwise stated, V_{DD} = 5.0V \pm 10%, no load on any output, and ambient temperature range T_A = 0°C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are \pm 3 σ from typical.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION CLOCK (MHz)		MIN.	TYP.	MAX.	UNITS
Clock Output (CLKC)							
Duty Cycle *		From riging edge to riging edge at 2.51/	40.000	43		47	- %
Duty Cycle		From rising edge to rising edge at 2.5V	48.000	42		46	76
Jitter, Long Term $(\sigma_v^2(\tau))$ *	$t_{j(LT)}$	From rising edge to 1st rising edge after	40.000		1550		
Jiller, Long Term (O _y (t))	-)(21)	500 μ s at 2.5V, $C_L = 15pF$, all PLLs active	48.000		2070		ps
Pura Desiral (see als see al.) *		From rising edge to the next rising edge at	40.000		1530		ps
Jitter, Period (peak-peak) *	$t_{j(\DeltaP)}$	2.5V, $C_L = 15pF$, all PLLs active	48.000		2720		
Rise Time *	t _r	$V_0 = 0.5V$ to 4.5V; $C_L = 15pF$			3.0		ns
Fall Time *	t _f	$V_0 = 4.5V$ to 0.5V; $C_L = 15pF$			2.3		ns
Clock Stabilization Time *	t _{STB}	From power-up to output active			1.3		ms
Clock Output (CLKD)							
Duty Ovela *		From rising edge to rising edge at 2.5V	80.000	39		43	0/
Duty Cycle *			3.686	48		52	%
littor Long Torm ($\sigma^2(\sigma)$) *	tu	From rising edge to 1st rising edge after	80.000		1260		
Jitter, Long Term $(\sigma_y^2(\tau))$ *	t _{j(LT)}	$500\mu s$ at 2.5V, $C_L = 15pF$, all PLLs active	3.686		1620		ps
Rise Time *	t _r	$V_0 = 0.5V$ to 4.5V; $C_L = 15pF$			2.7		ns
Fall Time *	t _f	$V_O = 4.5 V$ to 0.5V; $C_L = 15 pF$			1.3		ns
Clock Stabilization Time *	t _{STB}	From power-up to output active		1.9		ms	

Figure 3: CLK1, CLK2, CLKB, CLKC, CLKD, REF Clock Outputs

Voltage	Low Dr	ive Curre	nt (mA)	Voltage	High D	rive Curre	nt (mA)
(V)	MIN.	TYP.	MAX.	(V)	MIN.	TYP.	MAX.
0	0	0	0	0	-35	-60	-89
0.2	4	5	6	0.5	-34	-59	-87
0.5	9	13	15	1	-33	-57	-83
0.7	12	17	21	1.5	-32	-54	-78
1	17	24	29	2	-29	-49	-72
1.2	20	28	35	2.5	-25	-44	-64
1.5	23	34	42	2.7	-23	-41	-61
1.7	26	37	47	3	-20	-37	-56
2	28	42	53	3.2	-18	-34	-52
2.2	30	45	57	3.5	-14	-29	-46
2.5	32	48	63	3.7	-12	-26	-42
2.7	33	50	67	4	-8	-20	-36
3	34	53	71	4.2	-5	-16	-32
3.5	35	56	77	4.5	0	-11	-25
4	35	57	82	4.7		-6	-20
4.5	35	58	84	5		0	-13
5		59	85	5.2			-8
5.5			87	5.5			0

11.20.98

6.0 Package Information

Table 8: 16-pin SOIC (0.150") Package Dimensions

	DIMENSIONS						
	INC	HES	MILLIM	ETERS			
	MIN. MAX.		MIN.	MAX.			
Α	0.061	0.068	1.55	1.73			
A1	0.004	0.0098	0.102	0.249			
A2	0.055	0.061	1.40	1.55			
В	0.013	0.019	0.33	0.49			
С	0.0075	0.0098	0.191	0.249			
D	0.386	0.393	9.80	9.98			
Е	0.150	0.157	3.81	3.99			
е	0.050	0.050 BSC		BSC			
Н	0.230	0.244	5.84	6.20			
h	0.010	0.016	0.25	0.41			
L	0.016	0.035	0.41	0.89			
Θ	0°	8°	0°	8°			

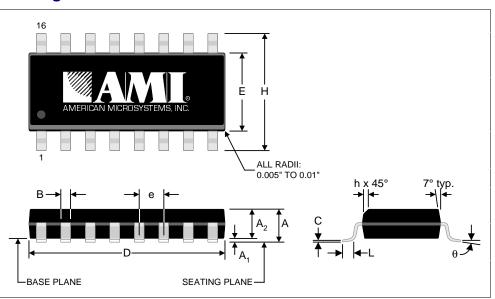


Table 9: 16-pin SOIC (0.150") Package Characteristics

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	TYP.	UNITS	
Thermal Impedance, Junction to Free-Air	Θ_{JA}	Air flow = 0 m/s	109	°C/W	
Lead Inductance, Self		Corner lead	4.0	nH	
Lead inductance, Seil	L ₁₁	Center lead	3.0	ПП	
Lead Inductance, Mutual		Any lead to any adjacent lead	0.4	nH	
Lead Capacitance, Bulk	C ₁₁	Any lead to V _{SS}	0.5	pF	

FS6017-02

Five PLL Clock Generator IC

November 1998

7.0 Ordering Information

ORDERING CODE	DEVICE NUMBER	FONT	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	SHIPPING CONFIGURATION
11117-002	FS6017	-02	16-pin (0.150") SOIC (Small Outline Package)	0°C to 70°C (Commercial)	Tape-and-Reel

Copyright © 1998 American Microsystems, Inc.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.

American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: http://www.amis.com E-mail: tgp@amis.com

