MILITARY SPECIFICATION

MICROCIRCUITS, LINEAR, LOW OFFSET OPERATIONAL AMPLIFIERS, MONOLITHIC SILICON
This specification is approved for use by all Departments and Agencies of the Department of Defense.

$$
\text { Reactivated for new design as of } 05 \text { November 2003. May be used for either new or existing design acquisition. }
$$

The requirement for acquiring the product herein shall consist of this specification sheet and MIL-PRF-38535.

1. SCOPE
1.1 Scope. This specification covers the detail requirements for monolithic silicon, low offset operational amplifiers. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4)
1.2 Part or identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. Devices may be monolithic or they may consist of two separate independent die. The device types are as follows:

Device type
01
02
03
04
05

Circuit

Single operational amplifier, ultra low offset, internally compensated Single operational amplifier, low offset, internally compensated Single operational amplifier, ultra low offset, internally compensated, ultra low noise Dual operational amplifier, low offset, ultra low noise internally compensated
Single operational amplifier, ultra low offset, internally compensated, ultra low noise, broadband
1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outline. The case outline are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
G	MACY1-X8	8	Can
P	GDIP1-T8 or CDIP2-T8	8	Dual-in-line
2	CQCC1-N20	20	Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to linear@dscc.dla.mil Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.
1.3 Absolute maximum ratings.
Supply voltage (V_{CC}) ± 22 V
Input voltage (V_{IN}) $\pm \mathrm{V}_{\mathrm{CC}}$
Differential input voltage range:
Device types 01 and 02 $\pm 30 \mathrm{~V}$
Device types 03, 04, and 05 $\pm 0.7 \mathrm{~V}$
Output short-circuit duration 1/
Lead temperature (soldering, 60 seconds) $+300^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction temperature (T_{J}) $+175^{\circ} \mathrm{C}$ 2/
Maximum power dissipation (PD) 500 mW 3/
1.4 Recommended operating conditions.Supply voltage range (V_{CC}):Device types 01 and 02$\pm 4.5 \mathrm{~V}$ dc to $\pm 20.0 \mathrm{~V}$
Device types 03, 04, and 05 $\pm 4.5 \mathrm{~V}$ dc to $\pm 18.0 \mathrm{~V}$
Ambient operating temperature range $\left(T_{A}\right)$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1.5 Power and thermal characteristics.

Case outlines	Maximum allowable power dissipation	Maximum $\theta \mathrm{JC}$	Maximum θ_{JA}
C	400 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$
G	330 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$
P	400 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$
2	400 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3,4 , or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications, standards, and handbooks. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

1/ Output may be shorted to ground indefinitely at $\mathrm{V}_{\mathrm{S}}= \pm 15$ volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.
2/ For short term test (in the specific burn-in and steady state life test configuration when required and up to 168 hours maximum), $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$.
3/ Maximum power dissipation versus ambient temperature.

DEPARTMENT OF DEFENSE STANDARDS

```
MIL-STD-883 - Test Method Standard for Microelectronics.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.
```

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein the text of this document shall take precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Circuit diagram and terminal connections. The circuit diagram and terminal connections shall be as specified on figure 1.
3.3.2 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.3.3 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and unless otherwise specified, apply over the full recommended ambient operating temperature range for supply voltages from $\pm 4.5 \mathrm{~V}$ dc to $\pm 20 \mathrm{~V}$ dc for device types 01 and 02 and for supply voltages from $\pm 4.5 \mathrm{~V}$ dc to $\pm 18 \mathrm{~V}$ dc for device types 03, 04, and 05. Unless otherwise specified, source resistance (RS) shall be 50 ohms for all tests.
3.5.1 Offset null circuits. The nulling inputs shall be capable of being nulled 0.5 mV beyond the specified offset voltage limits for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ using the circuit of figure 2.
3.5.2 Instability oscillations. The devices shall be free of oscillations when operated in the test circuits of this specification.
3.6 Electrical test requirements. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 49 (see MIL-PRF-38535, appendix A).

TABLE I. Electrical performance characteristics.

Test	Symbol	$\begin{gathered} \text { Conditions } \underline{1} / \\ \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ \text { unnulled, } \\ \text { see figure } 3 \text { and } 3.5 \\ \text { unless otherwise specified } \end{gathered}$	Device type	Limits		Unit
				Min	Max	
Input offset voltage	VIO	$\underline{2} / \underline{3} / 4 /$ see figure $4, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \hline 01,03, \\ 05 \end{gathered}$	-25	25	$\mu \mathrm{V}$
			02	-75	75	
			04	-80	80	
		$\underline{2} / \underline{3} /$$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\begin{gathered} 01,03, \\ 05 \end{gathered}$	-60	60	
			02	-200	200	
			04	-180	180	
		End point limit 4/	$\begin{gathered} \hline 01,03, \\ 05 \end{gathered}$	-100	100	
			02	-175	175	
			04	-180	180	
Input offset voltage temperature sensitivity	$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$		$\begin{gathered} 01,03, \\ 05 \end{gathered}$	-0.6	0.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
			02	-1.3	1.3	
			04	-1.0	1.0	
Input bias current	${ }^{+1}{ }_{\text {IB }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \underline{2} /$	01	-2	2	nA
			02	-3	3	
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-40	40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \quad \underline{2 /}$	01	-4	4	
			02	-6	6	
			$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-60	60	
		End point limit 4/	01	-3	3	
			02	-4.5	4.5	
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-50	50	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	$\begin{gathered} \hline \text { Conditions } 1 / \\ \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ \text { unnulled, } \\ \text { see figure } 3 \text { and } 3.5 \\ \text { unless otherwise specified } \\ \hline \end{gathered}$	Device type	Limits		Unit
				Min	Max	
Input bias current	${ }^{-1} \mathrm{IB}^{\text {B }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \underline{2}$	01	-2	2	nA
			02	-3	3	
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-40	40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \quad \underline{2} /$	01	-4	4	
			02	-6	6	
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-60	60	
		End point limit 4/	01	-3	3	
			02	-4.5	4.5	
			$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-50	50	
Input offset current	1 O	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \underline{2}$	01	-2	2	nA
			02	-2.8	2.8	
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-35	35	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \quad \underline{2}$	01	-4	4	
			02	-5.6	5.6	
			$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-50	50	
Power supply rejection ratio	+PSRR	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -\mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	01,02	-10	10	$\mu \mathrm{V} / \mathrm{V}$
		$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -\mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-10	10	
	-PSRR	$\begin{aligned} & -\mathrm{V}_{\mathrm{CC}}=-20 \mathrm{~V} \text { to }-5 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	01,02	-10	10	
		$\begin{aligned} & -\mathrm{V}_{\mathrm{CC}}=-18 \mathrm{~V} \text { to }-5 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-10	10	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	$\begin{gathered} \text { Conditions } \underline{1 /} \\ \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ \text { unnulled, } \\ \text { see figure } 3 \text { and } 3.5 \\ \text { unless otherwise specified } \end{gathered}$	Device type	Limits		Unit
				Min	Max	
Power supply rejection ratio	+PSRR	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V} \text { to } 5 \mathrm{~V}, \\ & -\mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$
		$\begin{aligned} & +V_{C C}=18 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -\mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-16	16	
	-PSRR	$\begin{aligned} & -\mathrm{V}_{\mathrm{CC}}=-20 \mathrm{~V} \text { to }-5 \mathrm{~V}, \\ & +\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	01,02	-20	20	
		$\begin{aligned} & -V_{C C}=-18 \mathrm{~V} \text { to }-5 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-16	16	
	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,02	-10	10	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-10	10	
		$\begin{aligned} & \mathrm{V} \mathrm{CC}= \pm 4.5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	01,02	-20	20	
		$\begin{aligned} & \mathrm{VCC}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-16	16	
Common mode rejection mode	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	01,02	110		dB
		$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	114		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	01,02	106		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	108		
Adjustment for input offset	V_{10} Adj(+)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \underline{2}$	All	0.5		mV
	V_{IO} Adj(-)				-0.5	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	$\begin{gathered} \text { Conditions } 1 / 1 \\ \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ \text { unnulled, } \\ \text { see figure } 3 \text { and } 3.5 \\ \text { unless otherwise specified } \end{gathered}$	Device type	Limits		Unit
				Min	Max	
Output short circuit current	$\operatorname{los}(+)$		03,05	-70		mA
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	04	-60		
		$\begin{aligned} & \mathrm{t} \leq 25 \mathrm{~ms} \quad \underline{5} / \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C} \end{aligned}$	01,02	-65		
		$\begin{aligned} & \mathrm{t} \leq 25 \mathrm{~ms} \quad \underline{5} / \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	01,02	-70		
	$\operatorname{los}(-)$	$\begin{aligned} & \mathrm{t} \leq 25 \mathrm{~ms} \quad \underline{5 /} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$		70	
		$\begin{aligned} & \mathrm{t} \leq 25 \mathrm{~ms} \quad \underline{5} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C} \end{aligned}$	01,02		65	
		$\begin{aligned} & \mathrm{t} \leq 25 \mathrm{~ms} \quad \underline{5 /} \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	01,02		70	
Supply current	ICC	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \underline{2} \underline{6} /$	01,02		4	mA
			$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$		5	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ 2/ $\underline{6} /$	01,02		5	
			$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$		6	
Output voltage swing (minimum)	Vop	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	01,02	-10	10	V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-10	10	
		$\mathrm{R}_{\mathrm{L}}=2,000 \Omega,$	01,02	-12	12	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-11.5	11.5	
Open loop voltage gain (single ended)	Avs	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \underline{71}$	01	300		V/mV
			02	200		
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	1,000		
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \quad$] 1	01	200		
			02	150		
			$\begin{gathered} 03,04, \\ 05 \end{gathered}$	600		

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	$\begin{gathered} \text { Conditions } 1 / \\ \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \\ \text { unnulled, } \\ \text { see figure } 3 \text { and } 3.5 \\ \text { unless otherwise specified } \end{gathered}$	Device type	Limits		Unit
				Min	Max	
Slew rate	SR(+) and SR(-)	$\begin{aligned} & \mathrm{V} \mathrm{IN}= \pm 5 \mathrm{~V}, \mathrm{AV}=1, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \text { see figure } 7 \end{aligned}$	01,02	. 08		V/ $/ \mathrm{S}$
			03,04	1.7		
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}, \mathrm{AV}=5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, see figure } 7 \end{aligned}$	05	11		
Input noise voltage density	En	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ see figure 5	01,02		18	$\begin{aligned} & \mathrm{nV} / \mathrm{I} \\ & \sqrt{\mathrm{~Hz}} \end{aligned}$
			03,05		5.5	
			04		6.0	
		$\mathrm{fo}^{\prime}=100 \mathrm{~Hz}$	01,02		14	
			03,05		4.0	
			04		5.0	
		$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	01,02		12	
			03,05		3.8	
			04		3.9	
Low frequency input noise voltage	Enpp	$\begin{aligned} & \mathrm{fO}_{\mathrm{O}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ see figure 6	01,02		0.6	$\mu \mathrm{V}_{\mathrm{PP}}$
			03,05		0.18	
			04		0.20	
Input noise current density	In	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ see figure 5	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$		5.66	$\begin{aligned} & \mathrm{pA} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
		$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ see figure 5	03,05		1.88	
			04		2.1	
		$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ see figure 5	03,05		0.84	
			04		0.89	

1/ For devices marked with the "Q" certification mark, the parameters listed herein may be guaranteed if not tested to the limits specified in accordance with the manufacturer's QM plan.
2/ Tested at $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
3/ Due to the inherent warm-up drift of types 01, 03, 04, and 05, testing shall occur no sooner than 5 minutes after application of power.
4/ Refer to table IV for end-point parameters.
5/ Continuous short circuit limits are considerably less than the indicated test limits since maximum power dissipation cannot be exceeded.
6/ For device type 04, ICC is per amplifier.
7/ $\mathrm{V}_{\text {OUT }}=0$ to +10 for $\mathrm{AVS}(+)$ and $\mathrm{V}_{\mathrm{OUT}}=0$ to -10 for $\operatorname{AVS(-).} \mathrm{R}_{\mathrm{L}}=2,000 \Omega$.

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters 1/	1*, 2, 3, 4, 7	1*, 2, 3, 4, 7
Group A test requirements 2/	$\begin{aligned} & 1,2,3,4,5, \\ & 6,7,9 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5, \\ & 6,7,9 \end{aligned}$
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3 and table IV delta limits	N/A
Group C end-point electrical 3/ parameters	1, 2, 3 and table IV delta limits	1 and table IV delta limits
Group D end-point electrical $\underline{3} /$ parameters	$\begin{gathered} \text { 1, 2, } 3 \text { and } \\ \text { table IV } \\ \text { endpoint limits } \\ \hline \end{gathered}$	1 and table IV endpoint limits

1/ PDA applies to subgroup 1.
2/ Subgroup 9 shall have a sample size series number of 5 for class S and class B devices.
3/ Table IV end-point parameters shall be used for V_{IO} and I_{IB} for class S and class B devices.

4. VERIFICATION.

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups 8,10 , and 11 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End point electrical parameters shall be as specified in table II herein. Delta limits shall apply to group C inspection, and shall consist of tests specified in table IV herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows.
4.5.1 Voltage and current. All voltage values given are referenced to the ground terminal of the device under test (DUT). Current values given are for conventional current and are positive when flowing into the referenced terminal.
4.5.2 Life test cooldown procedures. When devices are measured at $+25^{\circ} \mathrm{C}$ following application of the steadystate life or burn-in test condition, they shall be cooled to within $10^{\circ} \mathrm{C}$ of their power stable condition at room temperature prior to removal of the bias.

Figure 1. Terminal connections.

FIGURE 2. Offset null circuit.

FIGURE 3. Test circuit for static tests and slew rate.

NOTES:

1. All resistors are $\pm 0.1 \%$ percent tolerance and all capacitors are $\pm 10 \%$ unless specified otherwise.
2. Precautions shall be taken to prevent damage to the device under test (DUT) during insertion into socket and change of relay state (example: disable voltage supplies, current limit $\pm \mathrm{V}_{\mathrm{CC}}$, etc.).
3. Compensation capacitors should be added as required for test circuit stability. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and settling time shall be consistent with the test rate such that any value has settled for at least 5 loop time constants before the value is measured.
4. Adequate settling time should be allowed such that each parameter has settled to within 5% of its final value.
5. All relays are shown in the normal de-energized state.
6. Saturation of the nulling amp is not allowed on tests where the Pin 4 value is measured.
7. The load resistors 1000Ω and 2050Ω yield effective load resistance of 100Ω and 2000Ω respectively.
8. Any oscillation greater than $300 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ in amplitude shall be cause for device failure.
9. Device type 04 only, test both halves for all tests. The idle half of the dual amplifiers shall be maintained in this configuration where V_{1} is midway between $+\mathrm{V}_{\mathrm{CC}}$ and $-\mathrm{V}_{\mathrm{CC}}$, or the manufacturer has the option to connect the idle half in a $V_{\text {ID }}$ configuration such that the inputs are maintained at the same common mode voltage as the device under test.
10. Circuit within dashed area used for devices 03,04 , and 05 only.
11. For devices 01 and 02: $\mathrm{R} 1=500 \mathrm{k} \Omega \pm .01 \% ; \mathrm{R} 2=500 \mathrm{k} \Omega \pm .01 \%$.

For device 03, 04, and 05: R1 = $50 \mathrm{k} \Omega \pm .01 \% ; \mathrm{R} 2=50 \mathrm{k} \Omega \pm .01 \%$.
12. When using this test circuit for measuring slew rate, the oscillation detector shall be disabled.
13. For devices 01 and $02: \mathrm{R} 3=27 \mathrm{k} \Omega, \pm 5 \%, \mathrm{R} 4=100 \mathrm{k} \Omega, \pm 5 \%$. For devices 03, 04, and 05: R3 $=0 \Omega, \mathrm{R} 4=10 \mathrm{k} \Omega, \pm 5 \%$.

FIGURE 3. Test circuit for static tests and slew rate - Continued.

NOTES:

1. Same configuration used for both amplifiers of device 04.
2. Low thermal EMF sockets are recommended. The number of solder joints and dissimilar-metal junctions are to be minimized. The test circuit should contain a minimum number of components. All components should have the lowest possible temperature coefficients.
3. The temperature of the test circuit should be equal to that of the device under test (DUT).
4. Resistors $16 \mathrm{k} \Omega \pm 10.0 \%, 32 \Omega \pm 10 \%$, and $16 \mathrm{k} \Omega \pm 10.0 \%$ must be used together or resistors $50 \mathrm{k} \Omega \pm 1.0 \%, 100 \Omega \pm 1 \%$, and $50 \mathrm{k} \Omega \pm 1.0 \%$ must be used together.

FIGURE 4. Voltage offset test circuit.

NOTES:

1. Input noise voltage density (En) test: $\mathrm{R} 1=50 \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$. Input noise current density (In) test: $\mathrm{R} 1=105 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{M} \Omega$.
2. All resistors are metal film and $\pm 1 \%$ tolerance. Capacitors are in microfarads and are $\pm 10 \%$ tolerance.
3. Quan-Tech model 2283 or equivalent.
4. Quan-Tech model 2181 or equivalent.

FIGURE 5. Noise density test circuit.

NOTES:

1. All capacitor values are for non polarized capacitors only.
2. Resistors values are $\pm 1.0 \%$.

FIGURE 6. Low frequency test circuit.

NOTES:

1. Resistors are ± 1.0 percent tolerance and capacitors are ± 10 percent tolerance.
2. This capacitance includes the actual measured value with stray and wire capacitance.
3. Precautions shall be taken to prevent damage to the device under test during insertion into socket and in applying power.
4. Pulse input and output characteristics are shown on the next space.
5. Compensation capacitors should be added as required for test circuit stability. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and settling time shall be consistent with the test rate such that any value has settled for at least 5 loop time constants before the value is measured.
6. For device type 05 only.

FIGURE 7. Test circuit for slew rate.

Parameter symbol	Device type	Input pulse signal at $\mathrm{t}_{\mathrm{r}} \leq 50 \mathrm{~ns}$	Output pulse signal	Equation
$\mathrm{SR}(+)$	01,02, 03,04	-5 V to +5 V step $(\mathrm{AV}=1)$	Waveform 1	$\mathrm{SR}(+)=\Delta \mathrm{VO}_{\mathrm{O}}(+) / \Delta \mathrm{t}(+)$
$\mathrm{SR}(-)$	01,02, 03,04	+5 V to -5 V step $(\mathrm{AV}=1)$	Waveform 2	$\mathrm{SR}(-)=\Delta \mathrm{VO}(-) / \Delta \mathrm{t}(-)$
$\mathrm{SR}(+)$	05	-1 V to +1 V step $(\mathrm{AV}=5)$	Waveform 1	$\mathrm{SR}(+)=\Delta \mathrm{VO}_{\mathrm{O}}(+) / \Delta \mathrm{t}(+)$
$\mathrm{SR}(-)$	05	+1 V to -1 V step $(\mathrm{AV}=5)$	Waveform 2	$\mathrm{SR}(-)=\Delta \mathrm{VO}_{\mathrm{O}}(-) / \Delta \mathrm{t}(-)$

FIGURE 7. Test circuit for slew rate - Continued.

TABLE III. Group A inspection for device types 01 and 02.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Test no.	Notes $1 /$	Adapter pin number			Energized relays	Measured pin			Equation	Device type			Unit	
					1	2	3		No.	Value	Units			Min	Max		
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	${ }^{+1 B}$	4001	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \text { None } \\ \text { K1 } \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { E2 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{1 \mathrm{O}}=\mathrm{E} 1 \\ +\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 1-\mathrm{E} 2) \end{gathered}$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$	$\begin{aligned} & -2 \\ & -3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	nA	
	-IIB	"	3		15	-15	0	K2	4	E3	V	$-I_{I B}=2(E 3-E 1)$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & -2 \\ & -3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	"	
	10	"	4	$\underline{\underline{1}}$								$\mathrm{I}_{\mathrm{I}} \mathrm{=} 2(2 \mathrm{E} 1-\mathrm{E} 2-\mathrm{E} 3)$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$	$\begin{gathered} \hline-2 \\ -2.8 \end{gathered}$	$\begin{gathered} 2 \\ 2.8 \end{gathered}$	nA	
	+PSRR	4003	5		$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E4 } \\ & \text { E5 } \end{aligned}$	V	+PSRR = 66 (E4-E5)	01,02	-10	10	$\mu \mathrm{V} / \mathrm{V}$	
	-PSRR	4003	6		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{gathered} -20 \\ -5 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E6 } \\ & \text { E7 } \end{aligned}$	V	$-\mathrm{PSRR}=66$ (E6-E7)	01,02	-10	10	$\mu \mathrm{V} / \mathrm{V}$	
	PSRR	4003	7		$\begin{aligned} & 4.5 \\ & 20 \end{aligned}$	$\begin{gathered} -4.5 \\ -20 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E8 } \\ & \text { E9 } \end{aligned}$	V	PSRR $=32.25 \times($ E8 - E9)	01,02	-10	10	$\mu \mathrm{V} / \mathrm{V}$	
	CMRR	4003	8		$\begin{gathered} 28 \\ 2 \end{gathered}$	$\begin{gathered} -2 \\ -28 \end{gathered}$	$\begin{gathered} -13 \\ 13 \end{gathered}$	None	4	$\begin{aligned} & \text { E10 } \\ & \text { E11 } \end{aligned}$	V	CMRR = $20 \log \mid 26000 /($ E11 - E10)\|	01,02	110		dB	
	$\begin{gathered} \mathrm{V}_{10} \\ \operatorname{ADJ}(+) \end{gathered}$		9		15	-15	0	K5	4	E12	"	V IO $\mathrm{ADJ}(+)=\mathrm{E} 1-\mathrm{E} 12$	01,02	0.5		mV	
	$\begin{array}{r} V_{10} \\ \operatorname{ADJ}(-) \\ \hline \end{array}$		10		15	-15	0	K5,K6	4	E13	"	$\mathrm{V}_{\text {IO }} \mathrm{ADJ}(-)=$ E1 - E13	01,02		-0.5	mV	
	los(+)	3011	11	3/	15	-15	-10	None	5	I1	mA	$\mathrm{lOS}(+)=11$	01,02	-65		mA	
	los(-)	3011	12	3/	15	-15	10	None	5	12	mA	$\operatorname{los}(-)=12$	01,02		65	mA	
	Icc	4005	13		15	-15	0	None	1	13	mA	ICC $=13$	01,02		4	mA	
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	VıO	4001	14	Fig. 4	15	-15	0			E14	V	$\mathrm{V}_{\text {IO }}=\mathrm{E} 14 / 1000$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{gathered} \hline-60 \\ -200 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{V}$	
	${ }_{+1,}$	4001	$\begin{aligned} & 16 \\ & 17 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { None } \\ \text { K1 } \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { E15 } \\ & \text { E16 } \end{aligned}$	"	$\begin{gathered} \mathrm{V}_{\mathrm{IO}}=\mathrm{E} 15 \\ +\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 15-\mathrm{E} 16) \end{gathered}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -6 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	nA	
	-IIB	"	18		15	-15	0	K2	"	E17	"	$-_{\text {IB }}=2(\mathrm{E} 17-\mathrm{E} 15)$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -6 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	"	
	10	"	19	$\underline{\underline{\prime}}$								$\mathrm{I}_{\mathrm{O}}=2(2 \mathrm{E} 15-\mathrm{E} 16-\mathrm{E} 17)$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$	$\begin{gathered} \hline-4 \\ -5.6 \end{gathered}$	$\begin{gathered} \hline 4 \\ 5.6 \end{gathered}$	nA	
	+PSRR	"	20		$\begin{gathered} 20 \\ 5 \end{gathered}$	$\begin{aligned} & -15 \\ & -15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \text { E18 } \\ & \text { E19 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	+PSRR = 66(E18-E19)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$	
	-PSRR	"	21		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -20 \\ -5 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E20 } \\ & \text { E21 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	- PSRR $=66($ E20 - E21)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$	
	PSRR	"	22		$\begin{aligned} & 4.5 \\ & 20 \end{aligned}$	$\begin{gathered} -4.5 \\ -20 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \text { E22 } \\ & \text { E23 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	PSRR $=32.25 \times($ E22 - E23)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$	
	CMRR	4003	23		$\begin{gathered} 28 \\ 2 \end{gathered}$	$\begin{gathered} -2 \\ -28 \end{gathered}$	$\begin{gathered} -13 \\ 13 \end{gathered}$	None	4	$\begin{aligned} & \text { E24 } \\ & \text { E25 } \end{aligned}$	V	CMRR = $20 \log$ \|26000/(E24 - E25)		01,02	106		dB
	los(+)	3011	24	3/	15	-15	-10	None	5	14	mA	$\mathrm{IOS}(+)=14$	01,02	-65		mA	
	$\operatorname{los}(-)$	3011	25	3/	15	-15	10	None	5	15	mA	$\operatorname{los}(-)=15$	01,02		65	mA	
	ICC	4005	26		15	-15	0	None	1	16	mA	Icc $=16$	01,02		5	mA	

See footnotes at end of table.

TABLE III. Group A inspection for device types 01 and 02 - Continued.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Test no.	Notes 1/	Adapter pin number			Energizedrelays	Measured pin			Equation	Device type	Limits		Unit
					1	2	3		No.	Value	Units			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	VIO	4001	27	Fig. 4	15	-15	0			E26	V	$\mathrm{V}_{\text {IO }}=\mathrm{E} 26 / 1000$	$\begin{aligned} & \hline 01 \\ & 02 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-60 \\ -200 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 60 \\ 200 \\ \hline \end{array}$	$\mu \mathrm{V}$
	${ }^{+1 B}$	4001	$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	None K1	4	$\begin{aligned} & \mathrm{E} 27 \\ & \text { E28 } \end{aligned}$	"	$\begin{gathered} V_{I O}=E 27 \\ +I_{\mathrm{IB}}=2(\mathrm{E} 27-\mathrm{E} 28) \end{gathered}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -6 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 6 \end{aligned}$	$\overline{\mathrm{nA}}$
	${ }^{-1 / B}$	"	31		15	-15	0	K2	"	E29	"	$-^{\prime} \mathrm{IB}=2(\mathrm{E} 29-\mathrm{E} 27)$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -6 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	"
	I'O	4001	32	$\underline{2}$								$\mathrm{I}_{\mathrm{I}}=2(2 \mathrm{E} 27-\mathrm{E} 28-\mathrm{E} 29)$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{gathered} \hline-4 \\ -5.6 \end{gathered}$	$\begin{gathered} \hline 4 \\ 5.6 \end{gathered}$	nA
	+PSRR	4003	33		$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-15 \\ & -15 \end{aligned}$	0 0	None	4	$\begin{aligned} & \text { E30 } \\ & \text { E31 } \end{aligned}$	V	+PSRR = 66 (E30-E31)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$
	-PSRR	4003	34		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -20 \\ -5 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E32 } \\ & \text { E33 } \end{aligned}$	V	-PSRR = 66 (E32-E33)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	4003	35		$\begin{aligned} & 4.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.5 \\ & -20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \hline \text { E34 } \\ & \text { E35 } \\ & \hline \end{aligned}$	V	PSRR $=32.25 \times($ E34 - E35)	01,02	-20	20	$\mu \mathrm{V} / \mathrm{V}$
	CMRR	4003	36		$\begin{gathered} 28 \\ 2 \end{gathered}$	$\begin{gathered} -2 \\ \hline-28 \end{gathered}$	$\begin{gathered} -13 \\ \hline 13 \end{gathered}$	None	4	$\begin{aligned} & \text { E36 } \\ & \text { E37 } \end{aligned}$	V	CMRR $=20 \log \mid 26000 /(E 36-$ E37 $) \mid$	01,02	106		dB
	$\operatorname{los}(+)$	3011	37	3/	15	-15	-10	None	5	17	mA	$\operatorname{los}(+)=17$	01,02	-70		mA
	$\operatorname{los}(-)$	3011	38	3/	15	-15	10	None	5	18	mA	$\operatorname{los}(-)=18$	01,02		70	mA
	ICC	3005	39		15	-15	0	None	1	19	mA	$\mathrm{I}_{\text {cc }}=19$	01,02		5	mA
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	+VOP	4004	$\begin{aligned} & 40 \\ & 41 \end{aligned}$		15	-15	-15	$\begin{aligned} & \text { K3 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E38 } \\ & \text { E39 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +V_{O P}=E 38 \\ & +V_{O P}=E 39 \end{aligned}$	$\begin{aligned} & \hline 01,02 \\ & 01,02 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$		V
	-Vop	4004	$\begin{aligned} & 42 \\ & 43 \end{aligned}$		15	-15	15	$\begin{aligned} & \hline \text { K3 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \mathrm{E} 40 \\ & \text { E41 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 40 \\ & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 41 \end{aligned}$	$\begin{aligned} & \hline 01,02 \\ & 01,02 \end{aligned}$		$\begin{aligned} & -10 \\ & -12 \end{aligned}$	"
	Avs(+)	4004	44		15	-15	-10	K4	4	E42	V	Avs(+) $10 /(E 1-E 42)$	$\begin{aligned} & 01 \\ & 02 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$		V/mV
	Avs(-)	4004	45		15	-15	10	K4	4	E43	V	$\operatorname{Avs}(-)=10 /(E 43-E 1)$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$		V/mV
	VIO	4001	46	Fig. 4	15	-15	0			E44	V	$\mathrm{V}_{1 \mathrm{O}}=\mathrm{E} 44 / 1000$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & -25 \\ & -75 \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$	$\mu \mathrm{V}$
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	+ $\mathrm{V}_{\text {OP }}$	4004	$\begin{aligned} & 47 \\ & 48 \end{aligned}$		15	-15	-15	$\begin{aligned} & \hline \text { K3 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \mathrm{E} 45 \\ & \text { E46 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 45 \\ & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 46 \end{aligned}$	$\begin{aligned} & \hline 01,02 \\ & 01,02 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$		V
	-Vop	4004	$\begin{aligned} & 49 \\ & 50 \end{aligned}$		15	-15	15	$\begin{aligned} & \hline \text { K3 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \mathrm{E} 47 \\ & \text { E48 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 47 \\ & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 48 \end{aligned}$	$\begin{aligned} & \hline 01,02 \\ & 01,02 \end{aligned}$		$\begin{aligned} & -10 \\ & -12 \end{aligned}$	
	$\begin{gathered} \Delta \mathrm{V}_{10} / \\ \Delta \mathrm{T} \\ \hline \end{gathered}$	4001	15	$\begin{gathered} \text { Fig. } 4 \\ \underline{4} / \\ \hline \end{gathered}$								$\Delta \mathrm{V}_{\text {IO }} / \Delta \mathrm{T}=(\mathrm{E} 14-\mathrm{E} 44) / 100(1000)$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & \hline-0.6 \\ & -1.3 \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & 1.3 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Avs(+)	4004	51		15	-15	-10	K4	4	E49	V	Avs(+) = 10/(E15 - E49)	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$		V/mV
	Avs(-)	4004	52		15	-15	10	K4	4	E50	V	$\operatorname{Avs}(-)=10 /(E 50-E 15)$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$		V/mV

See footnotes at end of table.

TABLE III. Group A inspection for device types 01 and 02 - Continued.

See footnotes at end of table.

TABLE III. Group A inspection for device types 03, 04, and 05.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Test no.	Notes	Adapter pin number			Energizedrelays	Measured pin			Equation	Device type	Limits		Unit
					1	2	3		No.	Value	Units			Min	Max	
1	+IIB	${ }^{4001}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None K1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{IO}}=\mathrm{E} 1 \\ +\mathrm{I}_{\mathrm{IB}}=20(\mathrm{E} 1-\mathrm{E} 2) \\ +\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 1-\mathrm{E} 2)-\text { device type } 05 \end{gathered}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-40	40	$\overline{\mathrm{nA}}$
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	-IIB	"	3		15	-15	0	K2	4	E3	V	$\begin{gathered} -I_{\mathrm{IB}}=20(\mathrm{E} 3-\mathrm{E} 1) \\ \mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 3-\mathrm{E} 1)-\text { device type } 05 \end{gathered}$	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-40	40	"
	10	"	4	$\underline{1}$								$\begin{gathered} \mathrm{I}_{\mathrm{O}}=20(2 \mathrm{E} 1-\mathrm{E} 2-\mathrm{E} 3) \\ \mathrm{I}_{\mathrm{IO}}=2(2 \mathrm{E} 1-\mathrm{E} 2-\mathrm{E} 3)-\text { device type } 05 \end{gathered}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-35	35	nA
	+PSRR	4003	5		$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} -15 \\ -15 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \text { E4 } \\ & \text { E5 } \end{aligned}$	V	+PSRR = 76.9 (E4-E5)	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-10	10	$\mu \mathrm{V} / \mathrm{V}$
	-PSRR	4003	6		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{gathered} -18 \\ -5 \\ \hline \end{gathered}$	0	None	4	$\begin{aligned} & \text { E6 } \\ & \text { E7 } \\ & \hline \end{aligned}$	V	-PSRR = 76.9 (E6-E7)	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-10	10	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	4003	7		$\begin{gathered} 4.5 \\ 18 \end{gathered}$	$\begin{gathered} -4.5 \\ -18 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \hline \text { E8 } \\ & \text { E9 } \end{aligned}$	V	PSRR $=37.04 \times($ E8 - E9)	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-10	10	$\mu \mathrm{V} / \mathrm{V}$
	CMRR	4003	8		$\begin{gathered} 26 \\ 4 \end{gathered}$	$\begin{gathered} -4 \\ -26 \end{gathered}$	$\begin{gathered} -11 \\ 11 \end{gathered}$	None	4	$\begin{aligned} & \text { E10 } \\ & \text { E11 } \end{aligned}$	V	CMRR = $20 \log \mid 22000 /($ E11 - E10)\|	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	114		dB
	$\begin{gathered} V_{10} \\ \operatorname{ADJ}(+) \\ \hline \end{gathered}$		9		15	-15	0	K5	4	E12	"	$\mathrm{V}_{\mathrm{IO}} \mathrm{ADJ}(+)=\mathrm{E} 1-\mathrm{E} 12$	$\begin{gathered} \hline 03,04, \\ 05 \\ \hline \end{gathered}$	0.5		mV
	VIO ADJ(-)		10		15	-15	0	K5,K6	4	E13	"	VIO ADJ(-) = E1-E13	$\begin{gathered} \hline 03,04, \\ 05 \\ \hline \end{gathered}$		-0.5	mV
	los(+)	3011	11	3/	15	-15	-10	None	5	I1	mA	$\mathrm{lOS}(+)=11$	$\begin{gathered} 03,05 \\ 04 \end{gathered}$	$\begin{aligned} & -70 \\ & -60 \end{aligned}$		mA
	$\operatorname{los}(-)$	3011	12	3/	15	-15	10	None	5	12	mA	$\operatorname{los}(-)=12$	03,04,05		70	mA
	Icc	4005	13		15	-15	0	None	1	13	mA	Icc $=13$	03,04,05		5	mA
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	V_{10}	4001	14	Fig. 4	15	-15	0			E14	V	$\mathrm{V}_{\mathrm{IO}}=\mathrm{E} 14 / 1000$	$\begin{gathered} \hline 03,05 \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} \hline-60 \\ -180 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ 180 \\ \hline \end{gathered}$	\ldots
	${ }_{+1,}$	4001	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None K1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { E15 } \\ & \text { E16 } \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{IO}}=\mathrm{E} 15 \\ +\mathrm{I}_{\mathrm{IB}}=20(\text { E15 }- \text { E16 }) \\ +\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 15-\mathrm{E} 16)-\text { device type } 05 \end{gathered}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-60	60	nA
	-IIB	"	18		15	-15	0	K2	"	E17	"	$\begin{gathered} -\mathrm{IIB}_{\mathrm{IB}}=20(\mathrm{E} 17-\text { E15 }) \\ -\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 17-\text { E15 })-\text { device type } 05 \end{gathered}$	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-60	60	
	1 I	"	19	$\underline{1}$								$\begin{gathered} \mathrm{I}_{\mathrm{O}}=20(2 \mathrm{E} 15-\text { E16 -E17 }) \\ \mathrm{I}_{\mathrm{I}}=2(2 \mathrm{E} 15-\mathrm{E} 16-\text { E17 })-\text { device type } 05 \end{gathered}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-50	50	nA
	+PSRR	4003	20		$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E18 } \\ & \text { E19 } \\ & \hline \end{aligned}$	V	+PSRR = 76.9 (E18-E19)	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	-PSRR	4003	21		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{gathered} -18 \\ -5 \end{gathered}$	0 0	None	4	$\begin{aligned} & \text { E20 } \\ & \text { E21 } \end{aligned}$	V	-PSRR $=76.9$ (E20 - E21)	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	4003	22		$\begin{aligned} & 4.5 \\ & 18 \end{aligned}$	$\begin{gathered} -4.5 \\ -18 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E22 } \\ & \text { E23 } \end{aligned}$	V	PSRR $=37.04 \times($ E22 - E23)	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	CMRR	4003	23		$\begin{gathered} 25 \\ 5 \end{gathered}$	$\begin{gathered} \hline-5 \\ -25 \end{gathered}$	$\begin{gathered} -10 \\ 10 \end{gathered}$	None	4	$\begin{aligned} & \mathrm{E} 24 \\ & \text { E25 } \end{aligned}$	V	CMRR = $20 \log \mid 20000 /($ E24 - E25)\|	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	108		dB

See footnotes at end of table.

TABLE III. Group A inspection for device types 03, 04, and 05 - Continued.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Test no.	Notes $1 /$	Adapter pin number			$\underset{\text { relays }}{\text { Energized }}$	Measured pin			Equation	Device type	Limits		Unit
					1	2	3		No.	Value	Units			Min	Max	
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	los(+)	3011	24	3/	15	-15	-10	None	5	14	mA	$\operatorname{los}(+)=14$	$\begin{gathered} \hline 03,05 \\ 04 \end{gathered}$	$\begin{aligned} & -70 \\ & -60 \end{aligned}$		mA
	$\operatorname{los}(-)$	3011	25	3/	15	-15	10	None	5	15	mA	$\operatorname{los}(-)=15$	03,04,05		70	mA
	Icc	4005	26		15	-15	0	None	1	16	mA	$\mathrm{I}_{\text {cc }}=16$	03,04,05		6	mA
$3$$\mathrm{T}_{\mathrm{A}}=$$-55^{\circ} \mathrm{C}$	VIO	4001	27	Fig. 4	15	-15	0			E26	V	$\mathrm{V}_{\text {IO }}=\mathrm{E} 26 / 1000$	$\begin{gathered} 03,05 \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} \hline-60 \\ -180 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 180 \end{gathered}$	$\mu \mathrm{V}$
	+1/B	4001	$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	None K1	4	$\begin{aligned} & \text { E27 } \\ & \text { E28 } \end{aligned}$	"	$\begin{gathered} \mathrm{V}_{\mathrm{IO}}=\mathrm{E} 27 \\ +\mathrm{I}_{\mathrm{IB}}=20(\mathrm{E} 27-\mathrm{E} 28) \\ +\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 27-\mathrm{E} 28)-\text { device type } 05 \end{gathered}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$	-60	60	nA
	${ }^{-1 / B}$	"	31		15	-15	0	K2	"	E29	"	$\begin{gathered} -\mathrm{I}_{\mathrm{IB}}=20(\mathrm{E} 29-\mathrm{E} 27) \\ -\mathrm{I}_{\mathrm{IB}}=2(\mathrm{E} 29-\mathrm{E} 27)-\text { device type } 05 \end{gathered}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	-60	60	"
	Iı	4001	32	$\underline{1}$								$\begin{gathered} \mathrm{I}_{\mathrm{O}}=20(2 \mathrm{E} 27-\mathrm{E} 28-\mathrm{E} 29) \\ \mathrm{I}_{\mathrm{I}}=2(2 \mathrm{E} 27-\mathrm{E} 28-\mathrm{E} 29)-\text { device type } 05 \end{gathered}$	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-50	50	nA
	+PSRR	4003	33		$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-15 \\ & -15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \text { E30 } \\ & \text { E31 } \end{aligned}$	V	+PSRR = 76.9 (E30 - E31)	$\begin{gathered} \hline 03,04, \\ 05 \\ \hline \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	-PSRR	4003	34		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -18 \\ -5 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	None	4	$\begin{aligned} & \text { E32 } \\ & \text { E33 } \end{aligned}$	V	- PSRR $=76.9$ (E32-E33)	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	4003	35		4.5 18	$\begin{array}{r} \hline-4.5 \\ -18 \\ \hline \end{array}$	0	None	4	$\begin{aligned} & \text { E34 } \\ & \text { E35 } \\ & \hline \end{aligned}$	V	PSRR $=37.04 \times($ E34 - E35)	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	-16	16	$\mu \mathrm{V} / \mathrm{V}$
	CMRR	4003	36		$\begin{gathered} 25 \\ 5 \end{gathered}$	$\begin{array}{r} -5 \\ -25 \\ \hline \end{array}$	$\begin{aligned} & -10 \\ & 10 \\ & \hline \end{aligned}$	None	4	$\begin{aligned} & \text { E36 } \\ & \text { E37 } \end{aligned}$	V	CMRR = $20 \log \mid 20000 /(E 36-$ E37)\|	$\begin{gathered} 03,04, \\ 05 \\ \hline \end{gathered}$	108		dB
	los(+)	3011	37	3/	15	-15	-10	None	5	17	mA	$1 \mathrm{OS}(+)=17$	$\begin{gathered} \hline 03,05 \\ 04 \end{gathered}$	$\begin{aligned} & \hline-70 \\ & -60 \end{aligned}$		mA
	$\operatorname{los}(-)$	3011	38	3/	15	-15	10	None	5	18	mA	$\operatorname{los}_{(-)}=18$	03,04,05		70	mA
	Icc	3005	39		15	-15	0	None	1	19	mA	Icc $=19$	03,04,05		6	mA
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	+ $\mathrm{V}_{\text {OP }}$	4004	$\begin{aligned} & 40 \\ & 41 \end{aligned}$		15	-15	-15	$\begin{aligned} & \hline \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E38 } \\ & \text { E39 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 38 \\ & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 39 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	$\begin{gathered} \hline 10 \\ 11.5 \end{gathered}$		\bar{V}
	-Vop	4004	$\begin{aligned} & 42 \\ & 43 \end{aligned}$		15	-15	15	$\begin{aligned} & \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E40 } \\ & \text { E41 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -V_{O P}=E 40 \\ & -V_{O P}=E 41 \end{aligned}$	$\begin{gathered} 03,04, \\ 05 \end{gathered}$		$\begin{gathered} \hline-10 \\ -11.5 \end{gathered}$	
	Avs(+)	4004	44		15	-15	-10	K4	4	E42	V	Avs(${ }^{(+)}=10 /(\mathrm{E} 1-\mathrm{E} 42)$	$\begin{gathered} \hline 03,04, \\ 05 \\ \hline \end{gathered}$	1000		V/mV
	Avs(-)	4004	45		15	-15	10	K4	4	E43	V	Avs $(-)=10 /(E 43-E 2)$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	1000		V/mV
	VıO	4001	46	Fig. 4	15	-15	0			E44	V	$\mathrm{V}_{\mathrm{IO}}=\mathrm{E} 44 / 1000$	$\begin{gathered} 03,05 \\ 04 \\ \hline \end{gathered}$	$\begin{aligned} & -25 \\ & -80 \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 80 \\ \hline \end{array}$	$\mu \mathrm{V}$
5	+VOP	4004	$\begin{aligned} & \hline 47 \\ & 48 \end{aligned}$		15	-15	-15	$\begin{aligned} & \hline \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \mathrm{E} 45 \\ & \text { E46 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 45 \\ & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 46 \end{aligned}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	$\begin{gathered} \hline 10 \\ 11.5 \end{gathered}$		V
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	-Vop	4004	$\begin{aligned} & 49 \\ & 50 \end{aligned}$		15	-15	15	$\begin{aligned} & \hline \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E47 } \\ & \text { E48 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 47 \\ & -\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 48 \end{aligned}$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$		$\begin{gathered} \hline-10 \\ -11.5 \end{gathered}$	

See footnotes at end of table.

TABLE III. Group A inspection for device types 03, 04, and 05 - Continued.

Subgroup	Symbol	$\begin{aligned} & \text { MIL- } \\ & \text { STD- } \\ & 883 \\ & \text { method } \end{aligned}$	Test no.	Notes $1 /$	Adapter pin number			Energized relays	Measured pin			Equation	Device type	Limits		Unit
					1	2	3		No.	Value	Units			Min	Max	
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \Delta \mathrm{V}_{1 \mathrm{O}} / \\ \Delta \mathrm{T} \end{gathered}$	4001	15	$\begin{gathered} \text { Fig. } 4 \\ 4 / \end{gathered}$								$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}=(\mathrm{E} 14-\mathrm{E} 44) / 100(1000)$	$\begin{array}{\|c\|} \hline 03,05 \\ 04 \end{array}$	$\begin{aligned} & \hline-0.6 \\ & -1.0 \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & 1.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Avs(+)	4004	51		15	-15	-10	K4	4	E49	V	Avs $(+)=10 /(E 15-E 49)$	$\begin{gathered} \hline 03,04, \\ 05 \end{gathered}$	600		V/mV
	Avs(-)	4004	52		15	-15	10	K4	4	E50	V	Avs(-) = 10/(E50 - E15)	$\begin{array}{\|c\|} \hline 03,04, \\ 05 \\ \hline \end{array}$	600		V/mV
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	+VOP	4004	$\begin{aligned} & 53 \\ & 54 \end{aligned}$		15	-15	-15	$\begin{aligned} & \hline \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E51 } \\ & \text { E52 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 51 \\ & +\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 52 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 03,04, \\ 05 \end{array}$	$\begin{gathered} \hline 10 \\ 11.5 \end{gathered}$		\bar{V}
	-Vop	4004	$\begin{aligned} & 55 \\ & 56 \end{aligned}$		15	-15	15	$\begin{aligned} & \hline \text { K7 } \\ & \text { K4 } \end{aligned}$	5	$\begin{aligned} & \text { E53 } \\ & \text { E54 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -V_{O P}=E 53 \\ & -V_{O P}=E 54 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 03,04, \\ 05 \end{array}$		$\begin{gathered} \hline-10 \\ -11.5 \end{gathered}$	"
	$\begin{gathered} \Delta \mathrm{V}_{10} / \\ \Delta \mathrm{T} \\ \hline \end{gathered}$	4001	28	$\begin{gathered} \text { Fig. } 4 \\ 4 / \end{gathered}$								$\Delta \mathrm{V}_{\text {IO }} / \Delta \mathrm{T}=(\mathrm{E} 26-\mathrm{E} 44) / 100(1000)$	$\begin{array}{\|c\|} \hline 03,05 \\ 04 \end{array}$	$\begin{aligned} & \hline-0.6 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Avs(+)	4004	57		15	-15	-10	K4	4	E55	V	Avs(+) $=10 /(\mathrm{E} 27-\mathrm{E} 55)$	$\begin{gathered} \hline 03,04, \\ 05 \\ \hline \end{gathered}$	600		V/mV
	Avs(-)	4004	58		15	-15	10	K4	4	E56	V	Avs(-) $=10 /(\mathrm{E} 56-\mathrm{E} 27$)	$\begin{array}{\|c\|} \hline 03,04, \\ 05 \end{array}$	600		V/mV
7$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	SR(+)	4002	59	$\begin{gathered} \underline{5} / \underline{6} /, \\ \underline{71} \\ \hline \end{gathered}$	15	-15	0	$\begin{gathered} \mathrm{K} 4, \mathrm{~K} 9, \\ \text { K10 } \\ \hline \end{gathered}$	5	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{O}(+)}(\mathrm{t} \\ \Delta \mathrm{t}(+) \\ \hline \end{gathered}$	$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{SR}(+)=\Delta \mathrm{V}_{\mathrm{O}}(+) / \Delta \mathrm{t}(+)$	$\begin{array}{\|c\|} \hline 03,04 \\ 05 \\ \hline \end{array}$	$\begin{gathered} 1.7 \\ 11 \\ \hline \end{gathered}$		V/ $\mu \mathrm{s}$
	SR(-)	4002	60	$\begin{gathered} 5 / 6 / \\ \hline \underline{61} \\ \hline \end{gathered}$	15	-15	0	$\begin{gathered} \hline \text { K4,K9, } \\ \text { K10 } \end{gathered}$	5	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{O}}(-), \\ \Delta \mathrm{t}(-) \\ \hline \end{gathered}$	$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{SR}(-)=\Delta \mathrm{V}_{\mathrm{O}}(-) / \Delta \mathrm{t}(-)$	$\begin{array}{\|c\|} \hline 03,04 \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.7 \\ & 11 \end{aligned}$		V/ $/ \mathrm{s}$
	En		61 62 63	fo $=$ 10 Hz $\mathrm{fo}_{\mathrm{O}}=$ 100 Hz $\mathrm{fo}=$ 1 kHz Fig. 5						$\begin{aligned} & \text { E57 } \\ & \text { E58 } \\ & \text { E59 } \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & \mathrm{En}=\mathrm{E} 57 \\ & \mathrm{En}=\mathrm{E} 58 \\ & \mathrm{En}=\mathrm{E} 59 \end{aligned}$	$\begin{array}{\|c\|} \hline 03,05 \\ 04 \\ 03,05 \\ 04 \\ 03,05 \\ 04 \end{array}$		$\begin{aligned} & 5.5 \\ & 6.0 \\ & 4.0 \\ & 5.0 \\ & 3.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
	Enpp		64	Fig. 6						E60	VPP	Enpp = E60 / 50000	$\begin{array}{\|c\|} \hline 03,05 \\ 04 \\ \hline \end{array}$		$\begin{aligned} & \hline .18 \\ & .20 \end{aligned}$	$\mu \mathrm{VPP}$
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	In		$\begin{aligned} & 65 \\ & 66 \\ & 67 \end{aligned}$	$\begin{gathered} \mathrm{fo}_{\mathrm{O}}= \\ 10 \mathrm{~Hz} \\ \mathrm{fo}_{\mathrm{o}}= \\ 100 \mathrm{~Hz} \\ \mathrm{fo}_{\mathrm{O}}= \\ 1 \mathrm{kHz} \\ \mathrm{Fig} .5 \\ \hline \end{gathered}$						$\begin{aligned} & \text { E61 } \\ & \text { E62 } \\ & \text { E63 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{pA} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & \text { In }=\left\{\left[(E 61)^{2}-(E 57)^{2}-\left(1.64 \times 10^{-15}\right)\right] 10^{-10}\right\} 0.5 \\ & \mathrm{In}=\left\{\left[(\mathrm{E} 62)^{2}-(E 58)^{2}-\left(1.64 \times 10^{-15}\right)\right] 10^{-10}\right\} 0.5 \\ & \mathrm{In}=\left\{\left[(\mathrm{E} 63)^{2}-(E 59)^{2}-\left(1.64 \times 10^{-15}\right)\right] 10^{-10}\right\} 0.5 \end{aligned}$	$\begin{array}{\|c} \hline 03,05 \\ 04 \\ 03,05 \\ 04 \\ 03,05 \\ 04 \end{array}$		$\begin{gathered} \hline 5.66 \\ 5.66 \\ 1.88 \\ 2.1 \\ 0.84 \\ 0.89 \end{gathered}$	$\begin{aligned} & \hline \mathrm{pA} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$

1/ All tests apply to figure 3, unless otherwise specified. For devices marked with the "Q" certification mark, the parameters listed herein may be guaranteed if not tested to the limits specified in accordance with the manufacturer's QM plan,
2/ l_{IO} is calculated using data from previous tests.
3/ $\operatorname{los}(+)$ and $\operatorname{los}(-)$ are measured with the output shorted to ground for less than 25 milliseconds
4/ $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{t}$ is calculated using data from previous tests.
5/ Slew rate can be measured using figure 7. All test signals for figure 3 are shown on figure 7
6/ The oscillation detector will be disconnected during slew rate tests.
기I Slew rate: For device types 03 and 04 energize relays K4 and K9. For device type 05 energize relays K4, K9, and K10.

TABLE IV. Group C end point and Group B, class S, electrical parameters.
($\mathrm{V}_{\mathrm{CM}}=0, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ for all device types)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for Group C end-point limits, $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for Group B , class S , end-point limits.

Test	Device 01				Device 02				Units
	Limit		Delta		Limit		Delta		
	Min	Max	Min	Max	Min	Max	Min	Max	
VIO	-135	135	-75	75	-300	300	-100	100	$\mu \mathrm{V}$
$+{ }_{\text {IB }}$	-5	5	-1	1	-7.5	7.5	-1.5	1.5	nA
- IIB	-5	5	-1	1	-7.5	7.5	-1.5	1.5	nA

Test	Devices 03 and 05				Device 04				Units
	Limit		Delta		Limit		Delta		
	Min	Max	Min	Max	Min	Max	Min	Max	
V_{10}	-135	135	-75	75	-280	280	-100	100	$\mu \mathrm{V}$
$+{ }_{1 B}$	-70	70	-10	10	-70	70	-10	10	nA
- IIB	-70	70	-10	10	-70	70	-10	10	nA

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service, or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6.0 NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory.)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. Pin and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirements for "JAN" marking.
j. Packaging requirements (see 5.1).
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, and MIL-HDBK-1331.
6.6 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	OP-07A
02	OP-07,714
03	OP-27A
04	OP-227A
05	OP-37A

6.8 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	
Air Force - 11	Project $5962-2121$
NASA - NA	
DLA - CC	

Review activities:
Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.

