

Current Transducer HNC-40CA

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

l _{pn}	=	400	A
-----------------	---	-----	---

Electrical data					
I _{PN}	Primary nominal DC or rms current	400	Α		
\mathbf{I}_{P}	Primary current, measuring range	0 ± 800	Α		
\mathbf{R}_{M}	Measuing resistance	20	Ω		
\mathbf{I}_{SN}	Second nominal current	100	mΑ		
$\mathbf{K}_{\!\scriptscriptstyle N}$	Turns ratio	1:4000			
$\mathbf{V}_{\!\scriptscriptstyle \mathrm{C}}$	Supply voltage (± 5 %)	± 15	V		
$I_{\rm C}$	Current consumpution	20 + I _{SN}	mΑ		
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50/60Hz, 1 min	2.0	kV		

Features

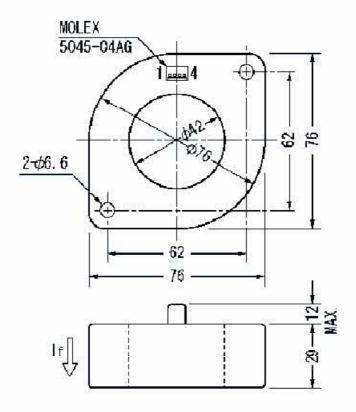
- Hall effect measuring principle
- Panel mount type

Accuracy-Dynamic performance data						
X	Accuracy @ T _A = 25°C		< ±1	% of I _{PN}		
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity (0 ± I _{PN})		$< \pm 0.5$	% of I _{PN}		
I_{\circ}	Electrical offset current @I	_P = 0, @ T _A = 25°C	± 0.5	mA		
I _{HC}	Hysteresis offset current @ after an excursion of \mathbf{I}_{PN}	$\mathbf{I}_{p} = 0,$	± 0.6	mA		
I _{OT}	Thermal drift of \mathbf{I}_{O}	0°C +70°C	± 0.03	mA/°C		
\mathbf{t}_{r}	Response time @ 90% of	l _P	< 3	μs		
TC € _G	Thermal drift of the gain (9	% of reading)	$< \pm 0.0$	4 %/°C		

Advantages

- High accuracy
- Excellent linearity
- Low temperature drift
- Good response time
- Wide frequency range
- Compact
- High immunity to external interference

General data						
\mathbf{T}_{A}	Ambient operating temperature	- 10 +	80 °C			
\mathbf{T}_{s}	Ambient storage temperature	- 15 + 8	35 °C			
\mathbf{R}_{S}	Secondary coil Resistance @T _A = 25°C	30	Ω			
m	Mass	310	g			


Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Inverters

HNC- 40CA (in mm)

Connector Pin Identification

NANALEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.