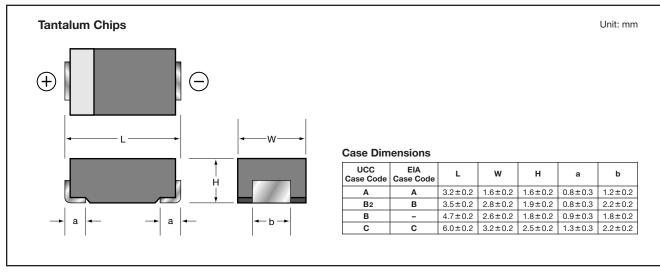


- Tantalum Chip
- Surface Mount
- Automotive Use

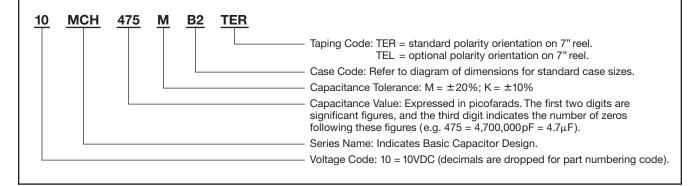
+125°C
 Maximum
 Temperature

The MCH series capacitors are the standard tantalum chip capacitors from UCC/NCC that are designed for automotive use. These surface mount capacitors are designed for high reliability and have excellent resistance against moisture and thermal shock. The MCH capacitors are available with either a $\pm 20\%$ or $\pm 10\%$ tolerance.

Refer to the Mini-Glossary at the end of the tantalum chip capacitors section for additional technical information and specifications.


Summary of Specifications

- Surface mount terminals.
- Capacitance range: 0.1 to 22µF.
- Voltage range: 4 to 35VDC.
- Operating temperature range: -55°C to +125°C.
- Standard capacitance tolerance: ±20% or ±10%
- Nominal case size (L×W×H): 3.2×1.6×1.6mm to 6.0×3.2×2.5mm.
- Rated lifetime: 2,000 hours at +85°C.


MCH Specifications

Item			Charact	eristics	
Operating Temperature Range	-55 to +85°C without voltage derating; -55 to +125°C with voltage derating.				
Rated Voltage Range	4 to 35VDC				
Capacitance Range	0.1 to 22µF				
Capacitance Tolerance	±20% (M) or ±10% (K) at +20°C, 120Hz				
Leakage Current	 I = 0.005CV or 0.25μA, whichever is greater, after applying the DC rated voltage for 5 minutes at +20°C. Where I = Leakage current (μA), C = Nominal capacitance (μF) and V = Rated voltage (VDC) 				
Dissipation Factor (Tan δ)	At +20°C, 120Hz				
	Capacitance (µF)	≤ 4.7μ	F ≥ 6.8µF		
	Max. Tan δ (DF)	4%	6%		
Low and High Temperature Characteristics	In accordance with JIS-C-5102 test conditions, the measurements for stability of electrical performance of capacitors at -55°C, +85°C and +125°C are shown in the following table.				
	Temperature (°C)		-55°C	+85°C	+125°C
	Max. Capacitance	e Change	±10%	±10%	±15%
	Max. Tan δ (DF)	$\leq 4.7 \mu F$	6%	4%	4%
		≥6.8μF	8%	6%	6%
	Max. Leakage Cu	rrent	_	\leq 0.1CV or 5 μ A, whichever is greater	≤ 0.125CV or 6.25µA, whichever is greater
Surge Voltage Test	Leakage current : shall not exceed 200% of initial specified LC value above In accordance with JIS-C-5102 test conditions, the following specifications shall be satisfied when the capacitors are restored to +20°C after applying the specified surge voltage for 1,000 cycles (1 cycle = 30 sec. on, 330 sec. off) at +85°C. Capacitance change : ≤ ±5% of initial measured value Tan δ (DF) : shall not exceed initial specified DF value above				
	Tan δ (DF)		ot exceed initial sp	pecified DF value above	
Soldering Heat Resistance	Leakage current In accordance w shall be dipped i After cooling and when the capaci	: shall n ith JIS-C-51 n a solder ba l 1-2 hours a tors are teste nge : $\leq \pm 5\%$: shall n : shall n	ot exceed initial sp ot exceed initial sp 43 test conditions, ath of eutectic sold to room temperatur of for electrical per of initial measure ot exceed initial sp	becified DF value above becified LC value above the mounting surface of ler (Sn 60%, Pb 40%) at re, the following specifica formance and appearan	capacitor terminals +260°C for 5 second tions shall be satisfie
Soldering Heat Resistance	Leakage current In accordance w shall be dipped i After cooling and when the capaci Capacitance cha Tan δ (DF) Leakage current Appearance In accordance w when the capaci at +85°C, 85% F Capacitance cha Tan δ (DF)	: shall n ith JIS-C-51 in a solder ba tors are teste inge : $\leq \pm 5\%$: shall n : no abr ith JIS-C-51 tors are resto RH. nge : $\leq \pm 5\%$: shall n	ot exceed initial sp ot exceed initial sp 43 test conditions, ath of eutectic sold to room temperatur of or electrical per of initial measure ot exceed initial sp ot exceed initial sp ormality 02 test conditions, ored to +20°C after of initial measure ot exceed 150% of	becified DF value above becified LC value above the mounting surface of ter (Sn 60%, Pb 40%) at te, the following specificat formance and appearan ad value becified DF value above becified LC value above the following specification r applying the DC rated v ad value f initial specified DF value	capacitor terminals +260°C for 5 second tions shall be satisfie ce at +20°C.
	Leakage currentIn accordance w shall be dipped i After cooling and when the capacit Capacitance cha Tan δ (DF) Leakage current AppearanceIn accordance w when the capacit at +85°C, 85% F Capacitance cha Tan δ (DF) Leakage currentIn accordance w when the capacit at +85°C, 85% F Capacitance cha Tan δ (DF) Leakage currentIn accordance w when the capacit at +85°C.Capacitance cha Tan δ (DF) Leakage current	: shall n ith JIS-C-51 in a solder ba l1-2 hours a tors are teste shall n : shall n : no abr ith JIS-C-51 tors are resto RH. nge : $\leq \pm 5\%$: shall n : sha	ot exceed initial sp ot exceed initial sp 43 test conditions, ath of eutectic sold t room temperatur ed for electrical per of entitial measure ot exceed initial sp ormality 02 test conditions, ored to +20°C after 04 of initial measure ot exceed 150% of V or 5 μ A, whicheve 02 test conditions, ored to +20°C after 02 test conditions, ored to +20°C after 03 test conditions, ored to +20°C after 04 test conditions,	becified DF value above becified LC value above the mounting surface of ler (Sn 60%, Pb 40%) at e, the following specificat formance and appearan ed value becified DF value above becified LC value above the following specification r applying the DC rated v the following specification r applying the DC rated v the following specification r applying the DC rated v applying the DC rated v	capacitor terminals +260°C for 5 second tions shall be satisfie ce at +20°C.
Humidity Load Life Test	Leakage currentIn accordance wshall be dipped iAfter cooling andwhen the capacitCapacitance chaTan δ (DF)Leakage currentAppearanceIn accordance wwhen the capacitat +85°C, 85% FCapacitance chaTan δ (DF)Leakage currentIn accordance wwhen the capacitTan δ (DF)Leakage currentIn accordance wwhen the capacitAppearanceIn accordance wwhen the capacitat +85°C.	: shall n ith JIS-C-51 ith JIS-C-51	ot exceed initial sp ot exceed initial sp 43 test conditions, th of eutectic sold throom temperature of or electrical per of of initial measure ot exceed initial sp ormality 02 test conditions, ored to $+20^{\circ}$ C after of exceed 150% of V or 5 μ A, whicheve 02 test conditions, ored to $+20^{\circ}$ C after 04 of initial measure of exceed 150% of V or 5 μ A, which even 05 test conditions, ored to $+20^{\circ}$ C after whether the exceed initial sp ot exceed initial measure of exceed initial measure of exceed initial measure ot exceed initial measure	becified DF value above becified LC value above the mounting surface of ler (Sn 60%, Pb 40%) at re, the following specificat formance and appearan d value becified DF value above becified LC value above the following specification r applying the DC rated v the following specification r applying the DC rated v	capacitor terminals +260°C for 5 second tions shall be satisfie ce at +20°C. ons shall be satisfied roltage for 1,000 hour e above
Humidity Load Life Test	Leakage currentIn accordance wshall be dipped iAfter cooling andwhen the capacitCapacitance chaTan δ (DF)Leakage currentAppearanceIn accordance wwhen the capacitat +85°C, 85% FCapacitance chaTan δ (DF)Leakage currentIn accordance wwhen the capacitat +85°C, 85% FCapacitance chaTan δ (DF)Leakage currentIn accordance wwhen the capacitat +85°C.Capacitance chaTan δ (DF)Leakage current	: shall n ith JIS-C-51 n a solder ba tors are teste nge : $\leq \pm 5\%$: shall n : no abr ith JIS-C-51 tors are resto H. nge : $\leq \pm 5\%$: shall n : shall n : shall n : shall n : shall n : shall n	ot exceed initial sp ot exceed initial sp 43 test conditions, th of eutectic sold t room temperatur of or electrical per of initial measure ot exceed initial sp ot exceed initial sp ormality 02 test conditions, ored to +20°C after to exceed 150% of V or 5µA, whicheve 02 test conditions, ored to +20°C after 02 test conditions, ored to +20°C after 03 test conditions, ored to +20°C after 04 of initial measure ot exceed initial sp ot exceed initial sp ot exceed initial sp	becified DF value above becified LC value above the mounting surface of the (Sn 60%, Pb 40%) at re, the following specificat formance and appearan ad value becified DF value above becified LC value above the following specification r applying the DC rated v ad value f initial specified DF value er is greater the following specification r applying the DC rated v ad value f applying the DC rated v ad value the following specification r applying the DC rated v ad value becified DF value above	capacitor terminals +260°C for 5 second tions shall be satisfie ce at +20°C.

Diagram of Dimensions

Part Numbering System for MCH Series When ordering, always specify complete catalog number for MCH Series.

Standard Voltage Ratings - Tantalum Chips

Rated Voltage (WVDC)	Capacitance (μF)	Catalog Part Number†	UCC Case Code*	EIA Case Code*
	2.2	4MCH225MATER	A	A
	3.3	4MCH335MATER	A	A
4 Volts	6.8	4MCH685MBTER	В	-
5 Volts Surge	10	4MCH106MBTER	В	-
	10	4MCH106MB2TER	B2	В
	22	4MCH226MCTER	С	С
	1.5	6MCH155MATER	A	A
	2.2	6MCH225MATER	A	А
6.3 Volts	4.7	6MCH475MBTER	В	-
8 Volts Surge	6.8	6MCH685MBTER	В	-
	6.8	6MCH685MB2TER	B2	В
	15	6MCH156MCTER	С	С
	1.0	10MCH105MATER	A	А
	1.5	10MCH155MATER	A	А
10 Volts	3.3	10MCH335MBTER	В	-
13 Volts Surge	4.7	10MCH475MBTER	В	-
	4.7	10MCH475MB2TER	B2	В
	10	10MCH106MCTER	С	С

 \dagger M = ±20% tolerance. Substitute code letter K in part number for ±10% tolerance.

TER = standard taping code. TEL = optional taping code. Refer to taping specifications.

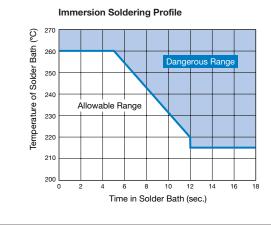
* Refer to diagram of dimensions for actual case sizes.

Standard Voltage Ratings - Tantalum Chips

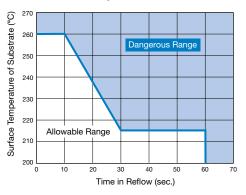
Rated Voltage (WVDC)	Capacitance (μF)	Catalog Part Number†	UCC Case Code*	EIA Case Code*
	0.68	16MCH684MATER	A	A
16 Volts	1.0	16MCH084MATER	A	A
	2.2	16MCH225MBTER	B	A
	3.3	16MCH335MBTER	B	
	3.3	16MCH335MB1ER	B2	B
-	6.8	16MCH685MCTER	C B2	<u> </u>
	0.0	TOWICHOSSIVICTER	C	0
	0.47	20MCH474MATER	A	А
	0.68	20MCH684MATER	A	A
20 Volts	2.2	20MCH225MBTER	В	-
25 Volts Surge	2.2	20MCH225MB2TER	B2	В
	4.7	20MCH475MCTER	C	C
		Zomorrioneren	Ŭ	Ŭ
	0.33	25MCH334MATER	A	А
25 Volts	0.47	25MCH474MATER	A	А
	1.5	25MCH155MBTER	В	-
32 Volts Surge	1.5	25MCH155MB2TER	B2	В
	3.3	25MCH335MCTER	С	С
I	!			
	0.1	35MCH104MATER	A	А
	0.15	35MCH154MATER	A	А
	0.22	35MCH224MATER	A	А
	0.33	35MCH334MATER	A	А
	0.47	35MCH474MBTER	В	-
35 Volts	0.47	35MCH474MB2TER	B2	В
44 Volts Surge	0.68	35MCH684MBTER	В	_
-	0.68	35MCH684MB2TER	B2	В
	1.0	35MCH105MBTER	В	-
	1.0	35MCH105MB2TER	B2	В
	1.5	35MCH155MCTER	С	С
	2.2	35MCH225MCTER	С	С

 \dagger M = \pm 20% tolerance. Substitute code letter K in part number for $\pm10\%$ tolerance.

TER = standard taping code. TEL = optional taping code. Refer to taping specifications.

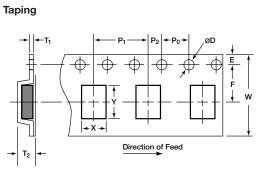

* Refer to diagram of dimensions for actual case sizes.

Soldering Conditions


Soldering Guidelines

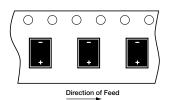
Pre-heat tantalum chip capacitors. Do not exceed +150°C for more than 5 minutes. The recommended soldering temperature profiles for the capacitors are shown below. Be sure to stay within the allowable range to avoid capacitor damage.

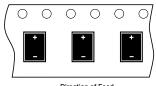
Recommended Soldering Temperature Profiles



Reflow Soldering Profile

Tape and Reel Specifications


Tantalum Chips


aping Dimensions				
Case Code (EIA Code)	A (A)	B2 (B)	В	с (С)
X±0.1	1.9	3.1	3.0	3.7
Y±0.1	3.5	3.8	5.2	6.4
W±0.3	8.0	8.0	12.0	12.0
F±0.05	3.5	3.5	5.65	5.5
E±0.1	1.75	1.75	1.5	1.75
P1±0.1	4.0	4.0	4.0	8.0
P ₂ ±0.05	2.0	2.0	2.0	2.0
P ₀ ±0.1	4.0	4.0	4.0	4.0
ØD+0.1,−0	1.5	1.5	1.5	1.5
T1	0.3	0.3	0.3	0.3
T ₂ ±0.2	2.0 max.	2.1	2.6	3.0

Orientation of Component Polarity

Taping Code: TER (standard)

Taping Code: TEL (optional)

Direction of Feed

Reel Dimensions and Quantity Per Reel

Case Code (EIA Code)	A (A)	B2 (B)	В	C (C)
ØE±2	178	178	178	178
ØF min.	50	50	50	50
ØG±0.5	13	13	13	13
ØH±0.8	21	21	21	21
K±0.5	2	2	2	2
W±1.5	10	10	14	14
T±0.5	2	2	2	2
R	1.0	1.0	1.0	1.0
Pieces Per Reel	2,000	2,000	2,000	600

MCH TANTALUM CHIP

Unit: mm