

1000-MHz Quadrature Modulator

Description

The U2790B is a 1000-MHz quadrature modulator using TEMIC Semiconductors' advanced UHF process. It features a frequency range from 100 MHz up to 1000 MHz, low current consumption, and single-ended RF and LO ports. Adjustment-free application makes the

direct converter suitable for all digital radio systems up to 1000 MHz, e.g., GSM, ADC, JDC.

Electrostatic sensitive device. Observe precautions for handling.

Features

- Supply voltage 5 V (typical)
- Very low power consumption: 150 mW (typical) for -1 dBm output level
- Very good sideband suppression by means of duty cycle regeneration of the LO input signal
- Phase control loop for precise 90° phase shifting
- Power-down mode
- Low LO input level: -10dBm (typical)
- $50-\Omega$ single-ended LO and RF port
- LO frequency from 100 MHz to 1 GHz
- SO16 package

Benefits

- No external components required for phase shifting
- Adjustment free, hence saves time
- Only three external components necesary, this results in cost and board space saving

Block Diagram

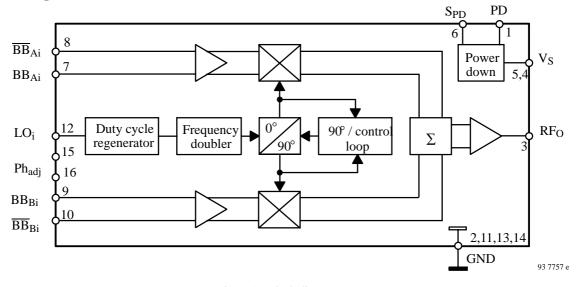
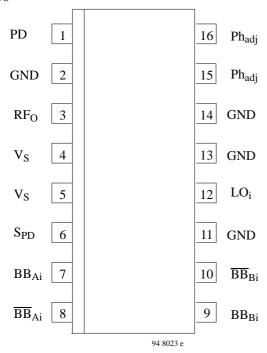


Figure 1. Block diagram

Ordering Information


Extended Type Number	Package	Remarks		
U2790B-BFP	SO16	Tube		
U2790B-BFPG3	SO16	Taped and reeled		

Rev. A3, 20-May-99

Pin Description

SO16

Pin	Symbol	Function
1	PD	Power-down port
2, 11, 13, 14	GND	Ground
3	RF_o	RF output
4, 5	V _S	Supply voltage
6	S_{PD}	Settling time power down
7	BB_{Ai}	Baseband input A
8	$\overline{\mathrm{BB}}_{\mathrm{Ai}}$	Baseband input A inverse
9	BB_{Bi}	Baseband input B
10	\overline{BB}_{Bi}	Baseband input B inverse
12	LOi	LO input
15/16	Ph _{adj}	Phase adjustment (not necessary for regular applications)

Absolute Maximum Ratings

	Parameters	Symbol	Value	Unit
Supply voltage	Pins 4 and 5	V _S	6	V
Input voltage	Pins 7, 8, 9, 10 and 12	V _i	0 to V _S	V
Junction temperat	ture	Tj	125	°C
Storage-temperate	ure range	T _{stg}	-40 to + 125	°C

Operating Range

_ 1			
Parameters	Symbol	Value	Unit
Supply-voltage range Pins 4 and 5	V _S	4.5 to 5.5	V
Ambient temperature range	T _{amb}	-40 to +85	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SO16	R_{thJA}	110	K/W

Electrical Characteristics

Test conditions (unless otherwise specified): $V_S = 5$ V, $T_{amb} = 25$ °C, referred to test circuit, system impedance $Z_O = 50$ Ω , $f_{LO} = 900$ MHz, $P_{LO} = -10$ dBm, $V_{BBi} = 1$ V_{pp} diff

		rr			
Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Pins 4 and 5	V_{S}	4.5		5.5	V
Pins 4 and 5	I _S		30		mA
Pins 7-8, 9-10					
	V _{BBi}		1000	1500	mV _{pp}
	Z_{BBi}		3.2		kΩ
	f_{BBi}	0		250	MHz
	V _{BBb}	2.35	2.5	2.65	V
	TC _{BB}		0.1	<1	mV/°C
Pin 12					
	f_{LOi}	50		1000	MHz
	P_{LOi}	-12	-10	-5	dBm
	Z _{iLO}		50		Ω
	VSWR _{LO}		1.4	2	_
	DCR _{LO}	0.4		0.6	_
Pin 3			•		•
	P _{RFo}	-5	-1		dBm
$f_{LO:} = 900 \text{ MHz}$ $f_{LO:} = 150 \text{ MHz}$	LO _{RFo}	30 32	35 35		dB
$f_{LO:} = 900 \text{ MHz}$	SBS _{RFo}	35 30	40 35		dB
	Pe		< 1		deg.
	A _e		<±0.25		dB
$V_{BBi} = 2 \text{ V}, \overline{V}_{BBi} = 3 \text{ V}$ $V_{BBi} = \overline{V}_{BBi} = 2.5 \text{ V}$	N _{FL}		- 132 - 144		dBm/Hz
	VSWR _{RF}		1.6	2	
	S _{BBH}	35	45		dB
	S _{RFH}		35		dB
$V_{PD} \le 0.5 \text{ V}$ Pins 4, 5 $V_{PD} = 1 \text{ V}$	I _{PD}		10	1	μΑ
$\begin{aligned} &C_{SPD} = 100 \text{ pF} \\ &C_{LO} = 100 \text{ pF} \\ &C_{RFo} = 1 \text{ nF} \end{aligned}$ Pin 6 to 3	t _{sPD}		10		μs
		-			
Pin 1					
Pin 1	V _{PDon}	4			V
	Pins 4 and 5 Pins 4 and 5 Pins 7-8, 9-10 Pin 12 Pin 3 $f_{LO:} = 900 \text{ MHz}$ $f_{LO:} = 150 \text{ MHz}$ $f_{LO:} = 100 \text{ MHz}$ $f_{LO:} = 100 \text{ pF}$ $f_{LO:} = 100 \text{ pF}$ $f_{LO:} = 100 \text{ pF}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c } \hline Test Conditions / Pin & Symbol & Min. \\ \hline Pins 4 and 5 & V_S & 4.5 \\ \hline Pins 4 and 5 & I_S \\ \hline Pins 7-8, 9-10 & V_{BBi} & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$\begin{array}{ c c c c } \hline Test Conditions / Pin & Symbol & Min. & Typ. \\ \hline Pins 4 and 5 & V_S & 4.5 \\ \hline Pins 4 and 5 & I_S & 30 \\ \hline Pins 7-8, 9-10 & & V_{BBi} & 1000 \\ \hline & & V_{BBi} & & 1000 \\ \hline & & Z_{BBi} & & 3.2 \\ \hline & & f_{BBi} & 0 & \\ & & V_{BBb} & 2.35 & 2.5 \\ \hline & & TC_{BB} & & 0.1 \\ \hline Pin 12 & & f_{LOi} & 50 & \\ \hline & & P_{LOi} & -12 & -10 \\ \hline & & Z_{iLO} & & 50 \\ \hline & & VSWR_{LO} & & 1.4 \\ \hline & & DCR_{LO} & 0.4 \\ \hline Pin 3 & & & & & & \\ \hline & & P_{RFo} & -5 & -1 \\ \hline f_{LO:} = 900 \text{ MHz} & & & & & & \\ f_{LO:} = 150 \text{ MHz} & & & & & & \\ f_{LO:} = 150 \text{ MHz} & & & & & & \\ F_{LO:} = 150 \text{ MHz} & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	$ \begin{array}{ c c c c c } \hline Test Conditions / Pin & Symbol & Min. & Typ. & Max. \\ \hline Pins 4 and 5 & V_S & 4.5 & 5.5 \\ \hline Pins 4 and 5 & I_S & 30 \\ \hline \hline Pins 7-8, 9-10 & & & & & & & & & \\ \hline \hline & & V_{BBi} & & & & & & & & \\ \hline & & & V_{BBi} & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & &$

Note: 1 The required LO level is a function of the LO frequency.

Note: 2 In reference to an RF output level ≤ -1 dBm and I/Q input level of 400 mV_{pp} diff

Note: 3 Sideband suppression is tested without connection at Pins 15 and 16.

For higher requirements a potentiometer can be connected at these pins.

Note: 4 For $T_{amb} = -30 \text{ to} + 85^{\circ}\text{C}$ and $V_S = 4.5 \text{ to } 5.5 \text{ V}$

Note: 5 By low-impedance signal source

Rev. A3, 20-May-99 3 (12)

Typical Single Sideband Output Spectrum at V_S = 4.5 V and V_S = 5.5 V f_{LO} = 900 MHz, P_{LO} = - 10 dBm, V_{BBi} = 1 V_{PP} (differential) T_{amb} = 25°C

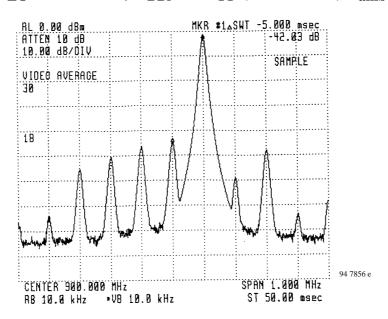


Figure 2.

Typical GMSK Output Spectrum

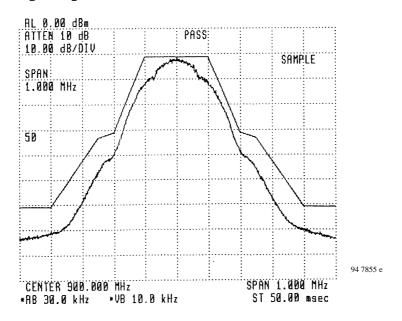


Figure 3.

Typical RF-Harmonic Output Spectrum

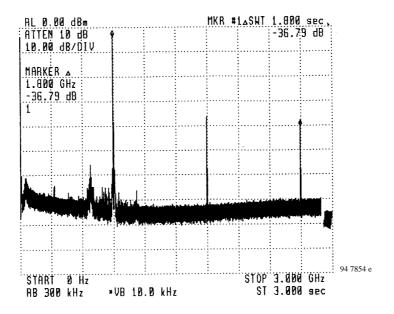
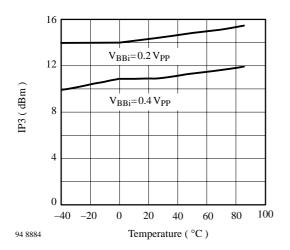
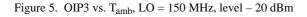




Figure 4.

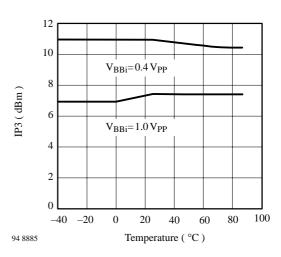
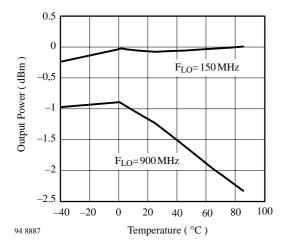



Figure 6. OIP3 vs. T_{amb} , LO = 900 MHz, level – 10 dBm

Rev. A3, 20-May-99 5 (12)

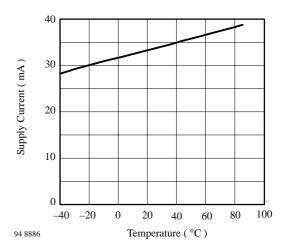


Figure 7. Output power vs. Tamb

Figure 8. Supply current vs. T_{amb}

Typical S11 Frequency Response of the RF Output

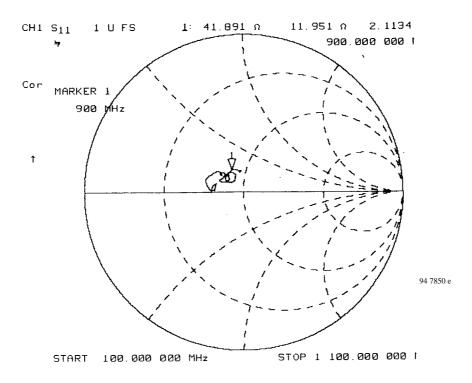
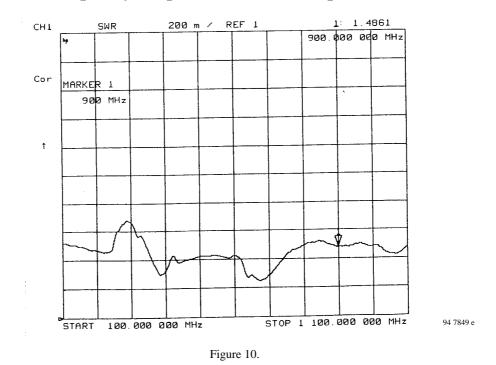
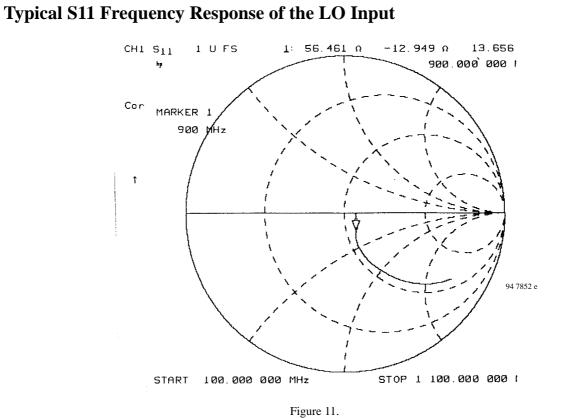
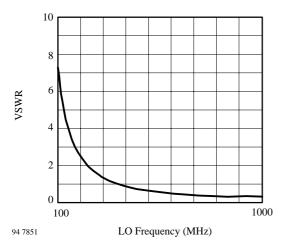
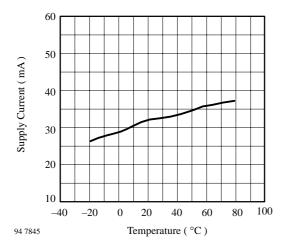




Figure 9.


Typical VSWR Frequency Response of the RF Output

Rev. A3, 20-May-99 7 (12)



2 (qittetential) (qit

Figure 12. Typical VSWR frequency response of the LO input

Figure 15. Typical required V_{BBi} input signal (differential) vs. LO frequency for $P_O=0\ dBm$ and $P_O=-2\ dBm$

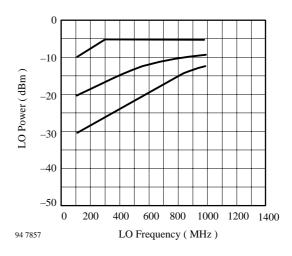


Figure 13. Typical supply current vs. temperature at $V_S = 5 \text{ V}$

Figure 16. Typical useful LO power range vs. LO frequency at $$T_{amb}=25\ ^{\circ}\text{C}$$

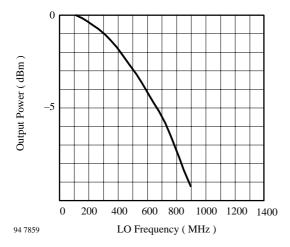


Figure 14. Typical output power vs. LO-frequency at T_{amb} = 25°C, V_{BBi} = 230 mV_{PP} (differential)

Application Circuit

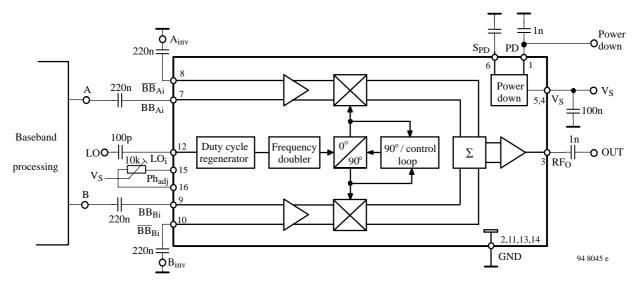


Figure 17.

PCB Basic Layout

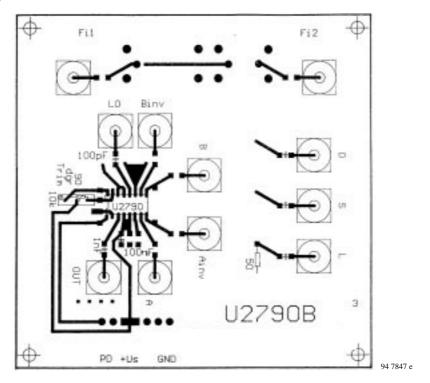


Figure 18. U2790B-FP (SO 16)

Rev. A3, 20-May-99 9 (12)

Application Notes

Noise Floor and Settling Time

In order to reduce noise on the power-down control input and improve the wide-off noise floor of the 900-MHz RF output signal, capacitor C_{PD} should be connected from Pin 6 to ground in the shortest possible way.

The settling time has to be considered for the system under design. For GSM applications, a value of $C_{PD}=1~\mathrm{nF}$ defines a settling time, t_{sPD} , equal or less than 3 μs . This capacitance does not have any influence on the noise floor within the relevant GSM mask. For mobile applications the mask requirements can be achieved very easily without C_{PD} .

A significant improvement of the wide-off noise floor is obtainable with C_{PD} greater than 100 nF. Such values are recommended for applications where the settling time is

not critical such as in base stations. Coupling capacitors for LO_i and RF_O also have a certain impact on the settling time. The values used for the measurements are $C_{LOi}=100\ pF$ and $C_{RF_O}=1\ nF.$

Baseband Coupling

U2790B-FP (SO16) has an integrated biasing network which allows AC coupling of the baseband signal at a low count of external components. The bias voltage is $2.5~V\pm~0.15~V$.

Figure 19 shows the baseband input circuitry with a resistance of 3.2 k Ω for each asymmetric input. The internal DC offset between A and \overline{A} , and B and \overline{B} is typically $<\pm$ 1 mV with a maximum of \pm 3 mV. DC coupling is also possible with an external DC voltage of 2.5 \pm 0.15 V.

Circuitries

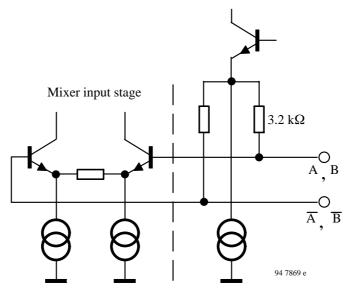


Figure 19. Baseband input circuitry

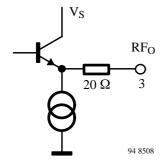


Figure 20. RF output circuitry

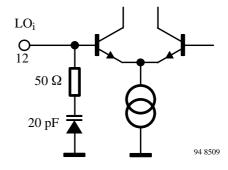
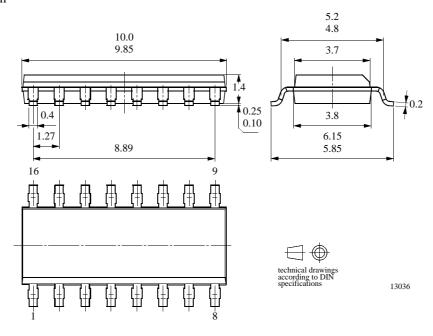



Figure 21. L_O input circuitry

Package Informaion

Package SO16 Dimensions in mm

Rev. A3, 20-May-99

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423