The documentation and process conversion measures necessary to comply with this revision shall be completed by 3 August 2004.

INCH-POUND

MIL-PRF-19500/127P <u>3 May 2004</u> SUPERSEDING MIL-PRF-19500/127N 09 July 1999

PERFORMANCE SPECIFICATION SHEET

SEMICONDUCTOR DEVICES, DIODE, SILICON, VOLTAGE REGULATOR, TYPES 1N4370A-1 THROUGH 1N4372A-1, AND 1N746A-1 THROUGH 1N759A-1, 1N4370AUR-1 THROUGH 1N4372AUR-1 AND 1N746AUR-1 THROUGH 1N759AUR-1, 1N4370C-1 THROUGH 1N4372C-1, AND 1N746C-1 THROUGH 1N759C-1, 1N4370CUR-1 THROUGH 1N4372CUR-1 AND 1N746CUR-1 THROUGH 1N759CUR-1, 1N4370D-1, THROUGH 1N4372D-1, AND 1N746D-1 THROUGH 1N759D-1, 1N4370DUR-1 THROUGH 1N4372DUR-1 AND 1N746DUR-1 THROUGH 1N759DUR-1, JAN, JANTX, JANTXV, JANHC, AND JANKC

JANS level (see 6.4).

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500.

1. SCOPE

* 1.1 <u>Scope</u>. This specification covers the performance requirements for 500 milliwatt, silicon, voltage regulator diodes with voltage tolerances of 5, 2, and 1 percent. Three levels of product assurance are provided for each encapsulated device type as specified in MIL-PRF-19500. Two level of product assurance is provided for each unencapsulated device.

1.2 <u>Physical dimensions</u>. See 3.4 and figure 1 (similar to DO-35) and figure 2 (similar to DO-213AA), and figures 3 and 4 for die.

* 1.3 <u>Maximum ratings</u>. Maximum ratings are as shown in maximum and primary test ratings (see 3.9) herein and as follows:

 $\begin{array}{l} {\sf P}_{\sf T} = 500 \text{ mW}, \ ({\sf DO-35}) \text{ at } {\sf T}_{\sf L} = +50^\circ\text{C}, \ {\sf L} = .375 \text{ inch } (9.53 \text{ mm}); \text{ both ends of case or diode body to heat sink at } {\sf L} = .375 \text{ inch } (9.53 \text{ mm}). \\ {\sf D} \text{erate } {\sf I}_{\sf Z} \text{ to } 0.0 \text{ mA dc at } +175^\circ\text{C}. \\ {\sf P}_{\sf T} = 500 \text{ mW}, \ ({\sf DO-213AA}) \text{ at } {\sf T}_{\sf EC} = +125^\circ\text{C}, \text{ derate to } 0 \text{ at } +175^\circ\text{C}. \\ {\sf -65^\circ\text{C}} \le {\sf T}_{\sf J} \le +175^\circ\text{C}; \ {\sf -65^\circ\text{C}} \le {\sf T}_{\sf STG} \le +175^\circ\text{C}. \\ {\sf +175^\circ\text{C}}. \end{array}$

* Comments, suggestions, or questions on this document should be addressed to Defense Supply Center, Columbus, ATTN: DSCC-VAC, P.O. Box 3990, Columbus, OH 43216-5000, or emailed to <u>Semiconductor@dscc.dla.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>http://www.dodssp.daps.mil</u>.

* 1.4 <u>Primary electrical characteristics</u>. Primary electrical characteristics are as shown in maximum and primary test ratings (see 3.9) herein and as follows:

2.4 V dc \leq V_z \leq 12 v dc. 1N4370A-1 through 1N4372A-1 and 1N746A-1 through 1N759A-1 are \pm 5 percent voltage tolerance. 1N4370C-1 through 1N4372C-1 and 1N746C-1 through 1N759C-1 are \pm 2 percent voltage tolerance. 1N4370D-1 through 1N4372D-1 and 1N746D-1 through 1N759D-1 are \pm 1 percent voltage tolerance. Thermal resistance:

 $R_{\theta JL} = 250 \circ C/W$ maximum at L = .375 inch (9.53 mm) (D0-35).

 $R_{\theta JEC} = 100^{\circ}C/W$ maximum. Junction to end-caps (D0-213AA).

2. APPLICABLE DOCUMENTS

* 2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

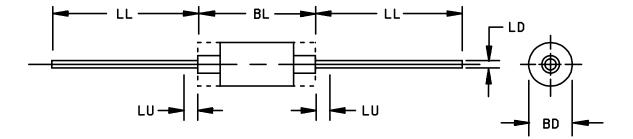
* 2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

* DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

* DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-750 - Test Methods for Semiconductor Devices.

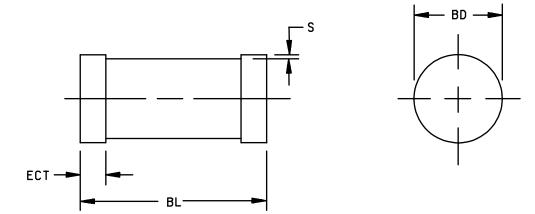

* (Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://www.dodssp.daps.mil from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

* 3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein.

3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list (QML) before contract award (see 4.2 and 6.3).

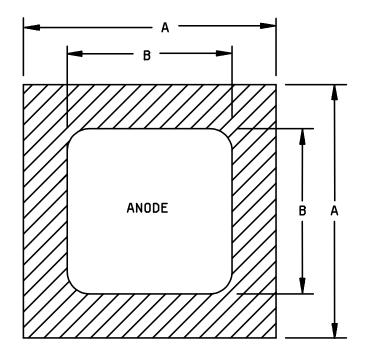


Symbol		Dimensions					
	Inches		Millir	neters			
	Min	Max	Min	Max			
BD	.055	.090	1.40	2.29	3		
BL	.120	.200	3.05	5.08			
LD	.018	.023	0.46	0.56			
LL	1.000	1.500	25.40	38.10			
LU		.050		1.27			

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol BD shall be measured at the largest diameter.
- 4. Within LU, lead diameter may vary to allow for flash, lead finish build-up, and minor irregularities other than heat slugs.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to $_{\phi}$ X symbology.

FIGURE 1. Physical dimensions for types 1N4370A-1 through 1N4372A-1, 1N4370C-1 through 1N4372C-1, 1N4370D-1 through 1N4372D-1, 1N746A-1 through 1N759A-1, 1N746C-1 through 1N759C-1, and 1N746D-1 through 1N759D-1 (DO-35).



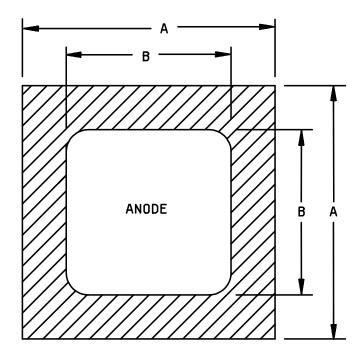
Symbol	Dimensions				
	Inc	hes	Millim	eters	
	Min	Max	Min	Max	
BL	.130	.146	3.30	3.70	
BD	.063	.067	1.60	1.70	
ECT	.016	.022	0.41	0.55	
S	.001 min		0.03	min	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to $_{\phi}$ X symbology.

FIGURE 2. Physical dimensions for types 1N4370AUR-1 through 1N4372AUR-1, 1N4370CUR-1 through 1N4372CUR-1, 1N4370DUR-1 through 1N4372DUR-1, 1N746AUR-1 through 1N759AUR-1, 1N746CUR-1 through 1N759CUR-1, and 1N746DUR-1 through 1N759DUR-1 (DO-213AA).

BACKSIDE IS CATHODE


(A - version)

Ltr	Dimensions					
	Inches		Inches		Millim	neters
	Min	Max	Min	Max		
А	.021	.025	0.53	0.63		
В	.013	.017	0.33	0.43		

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- The physical characteristics of the die thickness are .010 ±.002 (0.25 mm ±0.051 mm). Metallization is top = (anode)-AL, back: (cathode)-AU. AL thickness = 25,000 Å minimum, AU thickness = 4,000 Å minimum.
- 4. Circuit layout data: For zener operation, cathode must be operated positive with respect to anode.

FIGURE 3. Physical dimensions (JANHCA and JANKCA die dimensions).

BACKSIDE IS CATHODE

(B - version)

Ltr	Dimensions					
	Inch	es	Millim	neters		
	Min	Max	Min	Max		
А	.024	.028	0.61	0.71		
В	.017	.021	0.43	0.53		

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. The physical characteristics of the die thickness are .010 \pm .002 (0.25 mm \pm 0.051 mm). Metallization is top = (anode)-AL, back: (cathode)-AU. AL thickness = 40,000 Å minimum, AU thickness = 5,000 Å minimum.
- 4. Circuit layout data: For zener operation, cathode must be operated positive with respect to anode.

FIGURE 4. Physical dimensions (JANHCB and JANKCB die dimensions).

3.3 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-19500, and as follows.

EC - - - end-caps

3.4 <u>Interface and physical dimensions</u>. The interface and physical dimensions shall be specified in MIL-PRF-19500 and figures 1 and 2 (similar to DO-35 and DO-213AA), and figures 3 and 4 (die) herein.

3.4.1 Lead finish. Lead finish shall be solderable as defined in MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).

* 3.4.2 <u>Diode construction</u>. All devices shall be metallurgically bonded double plug construction in accordance with the requirements of category I, II, or III (see MIL-PRF-19500).

3.5 <u>Marking</u>. Devices shall be marked in accordance with MIL-PRF-19500. At the option of the manufacturer, the DO-35 version may leave off "-" portion of the type designator (example: JANTX1N4370A1).

3.5.1 <u>Marking of UR-1 version devices</u>. For UR-1 version devices only, all marking (except polarity) may be omitted from the body, but shall be retained on the initial container.

3.6 Selection of tight tolerance devices. The C and D suffix devices shall be selected from JAN, JANTX, or JANTXV devices, which have successfully completed all applicable screening, and groups A, B, and C testing as 5 percent tolerance devices. All sublots of C and D suffix devices shall pass table I, subgroup 2, at tightened tolerances. Tighter tolerances for mounting clip temperature shall be maintained for reference purpose to establish correlation. For C and D tolerance levels, $T_{I} = +25^{\circ}C \pm 2^{\circ}C$ at .375 inch (9.53 mm) from body or equivalent.

* 3.7 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, table I and table II.

3.8 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table III herein.

* 3.9 <u>Maximum and primary test ratings</u>. Maximum and primary test ratings for voltage regulator diodes are specified in table III herein.

3.10 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.

4. VERIFICATION

4.1 <u>Classification of inspections</u>. The inspection requirements specified herein are classified as follows:

- a. Qualification inspection (see 4.2).
- b. Screening (see 4.3)
- c. Conformance inspection (see 4.4).

4.2 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-19500 and as specified herein.

4.2.1 JANHC and JANKC devices. JANHC and JANKC devices shall be qualified in accordance with appendix G of MIL-PRF-19500.

4.2.2 <u>Construction verification</u>. Cross sectional photos from three devices shall be submitted in the qualification report.

4.3 <u>Screening (JAN, JANTX, and JANTXV levels only)</u>. Screening shall be in accordance with table IV of MIL-PRF-19500 and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see table IV of	Measuren	nent
MIL-PRF-19500)	JANTX and JANTXV levels	JAN level
За	Temperature cycling	Temperature cycling (in accordance with JANTX level of MIL-PRF-19500).
(1) 3c	Thermal impedance (see 4.3.2)	Thermal impedance (see 4.3.2).
9	Not applicable	Not applicable
11	I_{R1} and V_{Z2}	Not applicable
12	See 4.3.3, t = 48 hours	Not applicable
(2) 13	$\Delta I_{R1} \le 100$ percent of initial reading or 50 nA dc, whichever is greater. $\Delta V_Z \le \pm 2$ percent initial reading. Subgroup 2 of table I herein.	Not applicable

(1) Thermal impedance shall be performed any time after sealing provided temperature cycling is performed in accordance with MIL-PRF-19500, screen 3 prior to this thermal test.

(2) PDA = 5 percent for screen 13 applies to ΔI_{R1} and ΔV_{Z2} , and I_{R1} and V_{Z2} . Thermal impedance ($Z_{\theta}JX$) is not required in screen 13.

4.3.1 <u>Screening (JANHC and JANKC)</u>. Screening of JANHC and JANKC die shall be in accordance with appendix G of MIL-PRF-19500.

4.3.2 <u>Thermal impedance (Z₀JX)</u>. The Z₀JX measurements shall be performed in accordance with method 3101 of MIL-STD-750 to remove atypical devices. The maximum limit shall not exceed the group A subgroup 2 limit. If a lot exhibits an out of control condition, the entire lot shall be removed from the line and held for engineering evaluation and disposition.

- a. I_M measurement current1 mA 10 mA.
- b. I_H forward heating current5 A 1.0 A.
- c. t_H heating time10 ms.

* 4.3.3 <u>Power burn-in conditions</u>. Power burn-in conditions are as follows: $I_Z =$ column 8 of table IV minimum; T_A shall be room ambient in accordance with MIL-STD-750, section 4.5. Mounting and test conditions in accordance with method 1038 of MIL-STD-750, condition B. Adjust I_Z or T_A to achieve the required T_J . Use method 3100 of MIL-STD 750 to measure T_J . $T_J = 125^{\circ}$ C minimum.

4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500 and as specified herein. Group A inspection shall be performed on each sublot.

4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with MIL-PRF-19500, and table I herein.

4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table VIb (JAN, JANTX, and JANTXV) of MIL-PRF-19500 and 4.4.2.1 herein. Electrical measurements (end-points) shall be in accordance with the applicable inspections of table I, subgroup 2 herein. (Z_{AJX} applies to B3 only.)

* 4.4.2.1 Group B inspection, table VIb (JAN, JANTX and JANTXV) of MIL-PRF-19500.

<u>Subgroup</u>	Method	Condition
B2	1056	0°C to +100°C, 10cycles.
B2	1051	-55°C to +175°C, 25 cycles.
B2	4066	See 4.5.1.
B3	1027	I_{ZM} = Column 8 of table III minimum. Adjust I_{ZM} or T_A to ensure a $\ T_J$ = 150°C (minimum).
B4	2075	See 4.5.6.
B6	1032	T _A = 175°C

*4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table VII of MIL-PRF-19500, and as follows. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. (Z_{PJX} applies to C6 only.)

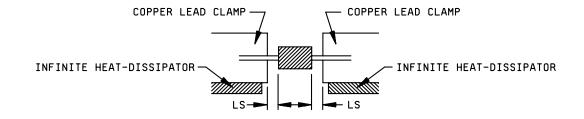
Subgroup	Method	Condition
C2	1056	0°C to +100°C, 10 cycles.
C2	1051	-55°C to +175°C, 20 cycles.
C2	2036	Tension: Test condition A; weight = 4 pounds, t = 15 seconds. Lead fatigue: Test condition E. (Tension and lead fatigue are not required for UR-1 suffix devices)
C2	1071	Test condition E.
C3		Not applicable.
C5	3101 or 4081	See 4.5.5 herein.
C6	1026	I_{ZM} = Column 8 of table III minimum. Adjust I_{ZM} or T_A to ensure a T_J = 150°C (minimum).
C7		Not applicable.
C8	4071	$I_Z = 7.5$ mA dc, $T_1 = +25^{\circ}C \pm 5^{\circ}C$, $T_2 = +125^{\circ}C \pm 5^{\circ}C$. (Max limit in accordance with columns 13 and 14 of table III). Sample size = 22, 0 rejects allowed.

4.4.4 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table IX of MIL-PRF-19500 and table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified in the appropriate tables and as follows.

4.5.1 Surge current (I_{ZSM}). The peak currents shown in column 10 of table III shall be applied in the reverse direction and these shall be imposed on the current ($I_Z = 20$ mA dc) a total of 5 surges at 1-minute intervals. Each individual surge shall be one-half square-wave-pulse of one one-hundred twenty second duration or an equivalent one-half sine wave with the same effective rms current. T_A = +25°C ±5°C.

4.5.2 <u>Regulator voltage measurements</u>. The test current shall be applied until thermal equilibrium is attained (20 \pm 2 seconds) prior to reading the breakdown voltage. For this test, the diode shall be suspended by its leads with mounting clips whose inside edge is located at .375 inch (9.53 mm) from the body (UR version = 0 lead length) and the mounting clips shall be maintained at a temperature of +25°C +8°C, and -2°C. This measurement may be performed after a shorter time following application of the test current than that which provides thermal equilibrium if correlation to stabilized readings can be established to the satisfaction of the Government. JANHC and JANKC shall be pulse tested at 10 ms maximum.


4.5.3 <u>Voltage regulation V_Z (reg</u>). Voltage regulation shall be determined by the difference of the regulator voltage measured at different currents as specified in table I, subgroup 7. Both test shall be performed at thermal equilibrium. This ΔV_Z shall not exceed column 7 of table III.

4.5.4 <u>Temperature coefficient of regulator voltage (α V_Z)</u>. The device shall be temperature stabilized with current applied prior to reading regulator voltage at the specified ambient temperature as specified in paragraph 4.4.3, group C, subgroup 8.

4.5.5 <u>Thermal resistance</u>. Thermal resistance measurement shall be performed in accordance with method 3101 or 4081 of MIL-STD-750. Forced moving air or draft shall not be permitted across the device during test. The maximum limit for $R_{\theta JL}$ under these test conditions shall be $R_{\theta JL}(max) = 250^{\circ}$ C/W or $R_{\theta JEC}(max) = 100^{\circ}$ C/W. The following conditions shall apply when using method 3101:

LS = Lead spacing = .375 inch as defined on figure 5 below:

LS = 0 inch for "UR" suffix devices.

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeter equivalents are given for general information only.

FIGURE 5. Mounting conditions.

4.5.5.1 For initial qualification and requalification. Read and record data in accordance with table II herein and shall be included in the qualification report.

4.5.6 <u>Decap internal visual scribe and break</u>. Scratch glass at cavity area with diamond scribe. Carefully snap open. Using 30X magnification examine the area where die (or bonding material) are in contact with the plugs, verify metallurgical bonding area. If the verification of the metallurgical bonding area is in question, test method 3101 of MIL-STD-750; and limits herein (Z_{PJX}) shall be used to determine suitability for use.

TABLE I. Group A inspection.

Inspection 1/		MIL-STD-750	Symbol	Limit	:s <u>2</u> /	Unit
	Method	Conditions		Min	Max	
Subgroup 1						
Visual and mechanical examination	2071					
Subgroup 2						
Forward voltage	4011	I _F = 200 mA dc.	V _F		1.1	V dc
Reverse current	4016	DC method, V_R = column 11 of table III.	I _{R1}		Col. 12	$_{\mu}$ A dc
Regulator voltage (see 4.5.2)	4022	I _{Z1} = 250 μA dc.	V _{Z1}	Col. 9	Col. 4	V dc
Regulator voltage (see 4.5.2)	4022	I _{Z2} = 20 mA dc.	V _{Z2}	Col. 3	Col. 4	V dc
Thermal impedance -1 suffix	3101	See 4.3.2, not applicable for JANHC and JANKC.	$Z_{ extsf{ heta}JX}$		35	∘C/W
Subgroup 3						
High temperature operation		T _A = 150°C				
Reverse current	4016	DC method, V_R = column 11 of table III.	I _{R2}		Col. 5	$_{\mu}A$ dc
Subgroup 4						
Small-signal reverse breakdown impedance	4051	I _Z = 20 mA dc, I _{SIG} = 10 percent of I _Z ac.	ZZ		Col. 6	ohm
Subgroups 5						
Not applicable						
	۱ 	I	1 1		I	ı I

See footnotes at end of table.

Inspection <u>1</u> /	MIL-STD-750		Symbol	Limits 2/		Unit
	Method	Conditions		Min	Max	
Subgroup 6						
Surge	4066	See 4.5.1				
Electrical measurements		See table I, subgroup 2.				
Surge	4066	See 4.5.1				
Subgroup 7						
Voltage regulation (see 4.5.3)		I _{Z3} = 2 mA dc; I _{Z4} = 20 mA dc	V _Z (reg)		Col. 7	V dc

TABLE I. Group A inspection - Continued.

1/ For sampling plan, see MIL-PRF-19500.
2/ Column references are to table III.

Inspection 1/		MIL-STD-750	Qualification conformance inspection
	Method	Conditions	(sampling plan)
Subgroup 1			45 devices, c = 0
Temperature cycling	1051	500 cycles, -55∘C to +175∘C.	
Electrical measurements		See table I, subgroup 2 herein.	
Subgroup 2			22 devices, c = 0
Intermittent operation life	1037	6,000 cycles. I_Z = column 8 of table III.	
Electrical measurements		See table I, subgroup 2 herein.	
Subgroup 3			3 devices, c = 0
Decap analysis	2101	Cross section and scribe and break. Separate samples shall be used for each test.	
Subgroup 4			N/A
Thermal impedance curves		Each supplier shall submit their (typical) maximum design thermal impedance curves. In addition, the optimal test conditions and $Z_{\theta JX}$ limit shall be provided to the qualifying activity in the qualification report.	
Subgroups 5 and 6			
Not applicable			
Subgroup 8			45 devices, c = 0
Resistance to glass cracking	1057	Condition B. Cool down after solder immersion is permitted. Test until failure occurs on all devices with the chosen sample or to a maximum of 25 cycles, whichever comes first.	

* TABLE II. Group E inspection qualification and requalification (all product assurance levels).

Col 14	αVZ pos. limit	%/∘C	0 0 0 0 0 0 0 +.025 +.025 +.025 +.030 +.036 +.045 +.045 +.045 +.050 +.058 +.068
Col 13	αVZ neg. limit	%/∘C	-0.085 -0.080 -0.075 -0.076 -0.070 -0.055 -0.055 -0.028 -0.028 0 0 0 0 0 0 0
Col 12	l _{R1} at T _A = +25∘C V _R = col 11	μA	
Col 11	V _R	Volts	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Col 10	Izsw	МА	1000 1000 1000 1000 1000 1000 950 950 950 950 950 910 810 810 810 810 810 810 810 810 810 8
Col 9	Vz1 (min)	Volts	1.1 1.2 1.2 1.5 1.3 2.8 7.5 6.0 6.0 1.0 11.0
Col 8	IzM	МА	155 140 125 125 120 120 120 120 125 120 125 120 125 120 125 120 125 120 125 120 120 120 120 120 120 120 120 120 120
Col 7	Vz (reg)	Volts	1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0
Col 6	Z _z at I _z = 20 mA	σ	30 30 30 30 30 30 30 30 30 30 30 30 30 3
Col 5	l _{R2} at T _A = +150∘C V _R = col 11	μA	200 200 50 50 50 50 50 50 50 50 50 50 50 50 5
Col 4	V _{Z1} and V _{Z2} max	Volts	2.52 2.52 3.15 3.15 3.78 4.51 4.09 4.51 7.87 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.1
Col 3	V _{Z2} min	Volts	2.28 2.57 2.57 3.14 3.14 4.09 5.32 5.32 7.13 7.79 8.65 8.65 9.50 11.40
Col 2	V _{Z2} nom at l _Z = 20 mA	Volts	2.4 2.7 3.0 3.3 3.6 5.1 5.1 5.1 5.6 6.8 6.8 6.8 8.2 9.1 12.0
Col 1	Type		1N4370A-1 1N4371A-1 1N746A-1 1N746A-1 1N748A-1 1N750A-1 1N750A-1 1N752A-1 1N755A-1 1N755A-1 1N755A-1 1N755A-1 1N755A-1 1N755A-1 1N755A-1 1N759A-1

TABLE III. Electrical characteristics (5 percent tolerance diodes).

MIL-PRF-19500/127P

MIL-PRF-19500/127P	
--------------------	--

Col 14	αVZ pos. limit	%/∘C	0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Col 13	αVZ neg. limit	%/∘C	-0.085 -0.075 -0.075 -0.070 -0.065 -0.065 -0.028 -0.028 0 0 0 0 0 0 0 0 0 0 0 0 0
Col 12	l _{R1} at TA = +25∘C VR = col 11	Αų	100 00 11 12 20 20 20 20 11 12 20 20 20 20 20 20 20 20 20 20 20 20 20
Col 11	<pre>K</pre>	Volts	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
Col 9 Col 10	WSZ	mA	1000 1000 1000 1000 1000 990 980 990 970 810 810 740 650 400
Col 9	Vz1 (min)	Volts	1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Col 8	MZ	ШA	155 140 125 120 110 85 85 85 85 85 85 85 85 85 85 85 85 85
Col 7	Vz (reg)	Volts	0.11.1.0 0.11.1.0 0.11.0 0.0 0
Col 6	Z _z at I _z = 20 mA	Ω	30 229 24 22 22 23 24 15 15 16 6 5 5 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10
Col 5	l _{R2} at T _A = +150°C V _R = col 11	Αų	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Col 4	V _{Z1} and V _{Z2} max	Volts	2.448 2.754 3.06 3.672 3.672 3.672 4.794 4.794 4.794 6.324 6.324 6.324 6.324 6.324 6.328 7.650 7.650 10.20 12.24
Col 3	V _{Z2} min	Volts	2.352 2.646 2.94 3.528 3.528 5.486 5.488 5.4975 5.488 5.485
Col 2	V ₂₂ nom at I ₂ = 20 mA	Volts	2.4 2.7 3.0 3.3 3.6 5.6 6.2 6.2 6.2 6.2 6.2 7.5 7.5 7.5 7.0 10.0
Col 1	Type		1N4370C-1 1N4371C-1 1N4372C-1 1N746C-1 1N746C-1 1N749C-1 1N750C-1 1N750C-1 1N751C-1 1N755C-1 1N755C-1 1N756C-1 1N756C-1 1N756C-1 1N756C-1 1N756C-1 1N756C-1 1N756C-1

TABLE III. Electrical characteristics (2 percent tolerance diodes) - Continued.

Col 14	αVZ pos. limit	%/∘C	0 0 0 0 0 0 +.025 +.030 +.036 +.036 +.036 +.036 +.058 +.058 +.058 +.068 +.068
Col 13	αVZ neg. limit	%/∘C	-0.085 -0.080 -0.075 -0.070 -0.065 -0.043 -0.028 -0.028 -0.028 0 0 0 0 0 0 0
Col 12	l _{R1} at TA = +25∘C V _R = col 11	μA	
Col 11	<pre>K</pre>	Volts	9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Col 10	Izsw	mA	1000 1000 1000 1000 990 950 950 910 810 810 650 650 400
Col 9	Vz (min)	Volts	1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.3 1.2 1.0 1.0 1.0 1.0
Col 8	Izm	mA	155 140 125 125 120 110 110 85 77 70 85 60 85 55 50 85 83 83 85 83 83 83 83 83 83 83 83 83 83 83 83 83
Col 7	Vz (reg)	Volts	1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.1 1.0 0.0 1.0 0.1 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0
Col 6	Zz at Iz = 20 mA	Ω	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Col 5	I _{R2} at T _A = +150∘C V _R = col 11	Αų	200 200 202 202 202 202 202 202 202 202
Col 4	V _{Z1} and V _{Z2} max	Volts	2.424 2.727 3.030 3.333 3.636 3.939 4.747 5.656 5.656 6.868 6.868 6.868 6.868 8.282 9.191 10.10 12.12
Col 3	Vz2 min	Volts	2.376 2.673 2.673 3.267 3.564 4.653 5.544 5.544 6.138 6.732 6.138 6.732 8.118 8.118 9.009 9.009
Col 2	V ₂₂ nom at I ₂ = 20 mA	Volts	2.4 2.7 3.3.0 3.3.0 5.1 4.3 5.1 10.0 12.0 12.0
Col 1	Type		1N4370D-1 1N4371D-1 1N4372D-1 1N746D-1 1N746D-1 1N750D-1 1N751D-1 1N751D-1 1N755D-1 1N755D-1 1N755D-1 1N755D-1 1N755D-1 1N755D-1 1N759D-1

TABLE III. Electrical characteristics (1 percent tolerance diodes) - Continued.

MIL-PRF-19500/127P

5. PACKAGING

* 5.1 Packaging. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

- 6.1 Intended use. The notes specified in MIL-PRF-19500 are applicable to this specification.
- 6.2 <u>Acquisition requirements</u>. Acquisition documents should specify the following:
 - a. Title, number, and date of this specification.
 - b. Packaging requirements (see 5.1).
 - c. Lead finish (see 3.4.1).
 - d. Product assurance level and type designator.

6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML No. 19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from Defense Supply Center, Columbus, ATTN: DSCC/VQE, P.O. Box 3990, Columbus, OH 43216-5000 or e-mail vqe.chief@dla.mil.

6.4 <u>Cross reference substitution list</u>. Devices required for space flight applications are found in MIL-PRF-19500/533. Existing supplies of parts can be used until existing supplies are exhausted. A PIN for PIN replacement table follows, and these devices are directly interchangeable:

JANS	JANS
superseded PIN	superseding PIN
1N4370A-1, C-1 or D-1	1N6309, C, D
1N4371A-1, C-1 or D-1	1N6310, C, D
1N4372A-1, C-1 or D-1	1N6311, C, D
1N746A-1, C-1 or D-1	1N6312, C, D
1N747A-1, C-1 or D-1	1N6313, C, D
1N748A-1, C-1 or D-1	1N6314, C, D
1N749A-1, C-1 or D-1	1N6315, C, D
1N750A-1, C-1 or D-1	1N6316, C, D
1N751A-1, C-1 or D-1	1N6317, C, D
1N752A-1, C-1 or D-1	1N6318, C, D
1N753A-1, C-1 or D-1	1N6319, C, D
1N754A-1, C-1 or D-1	1N6320, C, D
1N755A-1, C-1 or D-1	1N6321, C, D
1N756A-1, C-1 or D-1	1N6322, C, D
1N757A-1, C-1 or D-1	1N6323, C, D
1N758A-1, C-1 or D-1	1N6324, C, D
1N759A-1, C-1 or D-1	1N6326, C, D

JANHC ordering information (1) (2)						
PIN	Manufacture CAGE					
	43611	12954				
1N4370	JANHCA1N4370	JANHCB1N4370				
1N4371	JANHCA1N4371	JANHCB1N4371				
1N4372	JANHCA1N4372	JANHCB1N4372				
1N746	JANHCA1N746	JANHCB1N746				
1N747	JANHCA1N747	JANHCB1N747				
1N748	JANHCA1N748	JANHCB1N748				
1N749	JANHCA1N749	JANHCB1N749				
1N750	JANHCA1N750	JANHCB1N750				
1N751	JANHCA1N751	JANHCB1N751				
1N752	JANHCA1N752	JANHCB1N752				
1N753	JANHCA1N753	JANHCB1N753				
1N754	JANHCA1N754	JANHCB1N754				
1N755	JANHCA1N755	JANHCB1N755				
1N756	JANHCA1N756	JANHCB1N756				
1N757	JANHCA1N757	JANHCB1N757				
1N758	JANHCA1N758	JANHCB1N758				
1N759	JANHCA1N759	JANHCB1N759				

* 6.5 <u>Suppliers of JANHC and JANKC die</u>. The qualified JANHC and JANKC die suppliers with the applicable letter version (example JANHCA1N4370A) will be identified on the QML.

(1) Suffixes can be "A", "C", or "D".

(2) Replace "HC" with "KC" when ordering JANKC die.

6.6 <u>Changes from previous issue</u>. The margins of this specification are marked with asterisks to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC

Review activities: Army – AR, AV, MI, SM Air Force – 19 Navy – AS, MC Preparing activity: DLA - CC

(Project 5961-2725)

* NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>http://www.dodssp.daps.mil</u>.