

DIFFERENTIAL OUTPUT SILICON OSCILLATOR

Features

- Quartz-free, MEMS-free, and PLL-free all-silicon oscillator
- Any output frequencies from 0.9 to 200 MHz
- Short lead times
- Excellent temperature stability (±20 ppm)
- Highly reliable startup and operation
- High immunity to shock and vibration
- Low jitter: <1.5 ps

Specifications

- 0 to 85 °C operation includes 10-year aging in hot environments
- Footprint compatible with industrystandard 3.2 x 5.0 mm XOs
- CMOS and SSTL versions available
- Driver stopped, tri-state, or powerdown operation
- RoHS compliant
- 1.8, 2.5, or 3.3 V options
- Low power
- More than 10x better fit rate than competing crystal solutions

Parameters	Condition	
Frequency Range		
	Temperature stability, 0 to +70 °C	
Frequency Stability	Temperature stability, 0 to +85 °C	
	Total stability, 0 to +70 °C operation ¹	
	Total stability, 0 to +85 °C operation ²	
Operating Temperature		
Storage Temperature		

Parameters	Min	Тур	Max	Units	
Frequency Range		0.9	—	200	MHz
	Temperature stability, 0 to +70 °C	_	±10	_	ppm
	Temperature stability, 0 to +85 °C	_	±20	_	ppm
Frequency Stability	Total stability, 0 to +70 °C operation ¹	—	-	±150	ppm
	Total stability, 0 to +85 °C operation ²	_	-	±250	ppm
Operating Temperature		0	—	+85	°C
Storage Temperature		-55	—	+125	°C
	1.8 V option	1.71	—	1.98	V
Supply Voltage	2.5 V option	2.25		2.75	V
	3.3 V option	2.97		3.63	V
	LVPECL	_	34.0	36.0	mA
	Low Power LVPECL	_	19.3	22.2	mA
	LVDS	—	14.9	16.5	mA
	HCSL	_	25.3	29.3	mA
Supply Current	Differential CMOS(3.3 V option, 10 pF on each output, 200 MHz)	_	33	36	mA
	Differential CMOS(3.3 V option, 1 pFon each output, 40 MHz)	_	16	_	mA
	Differential SSTL-3.3	_	24.5	27.7	mA
	Differential SSTL-2.5	_	24.3	26.7	mA
	Differential SSTL-1.8	—	22.2	25	mA
	Tri-State	_	9.7	10.7	mA
	Powerdown	_	1.0	1.9	mA

Notes:

S

S

1. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, first-year aging at 25 °C, shock, vibration, and one solder reflow.

2. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, ten-year aging at 85 °C, shock, vibration, and one solder reflow.

3. See "AN409: Output Termination Options for the Si500S and Si500D Silicon Oscillators" for further details regarding output clock termination recommendations.

4. $V_{TT} = .5 \times V_{DD}$.

5. $V_{TT} = .45 \times V_{DD}$

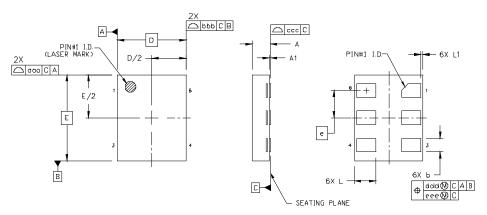
Parameters	Condition	Min	Тур	Max	Units
Output Symmetry	$V_{DIFF} = 0$	46 – 13 ns/T _{CLK}	—	54 + 13 ns/T _{CLK}	%
	LVPECL/LVDS		—	460	ps
Rise and Fall Times (20/80%) ³	HCSL/Differential SSTL		—	800	ps
	Differential CMOS, 15 pF, <u>></u> 80 MHz	—	1.1	1.6	ns
LVPECL Output Option	Mid-level	V _{DD} – 1.5	_	V _{DD} – 1.34	V
(DC coupling, 50 Ω to V _{DD} – 2.0 V) ³	Diff swing	.720	_	.880	V _{PK}
Low Power LVPECL Output Option	Mid-level		N/A	_	V
(AC coupling, 100 Ω Differential Load) ³	Diff swing	.68	—	.95	V _{PK}
LVDS Output Option (2.5/3.3 V)	Mid-level	1.15	—	1.26	V
$(R_{\text{TERM}} = 100 \Omega \text{ diff})^3$	Diff swing	0.25	_	0.45	V _{PK}
LVDS Output Option (1.8 V)	Mid-level	0.85		0.96	V
$(R_{\text{TERM}} = 100 \ \Omega \ \text{diff})^3$	Diff swing	0.25	_	0.45	V _{PK}
	Mid-level	0.35	_	0.425	V
HCSL Output Option ³	Diff swing	0.65		0.82	V _{PK}
	DC termination per pad	45		55	Ω
	V _{OH} , sourcing 9 mA	V _{DD} – 0.6		_	V
CMOS Output Voltage ³	V _{OL} , sinking 9 mA		—	0.6	V
	V _{OH}	V _{TT} + 0.375		_	V
SSTL-1.8 Output Voltage ⁴	V _{OL}			V _{TT} – 0.375	v
	V _{OH}	V _{TT} + 0.48		—	V
SSTL-2.5 Output Voltage ⁴	V _{OL}		—	V _{TT} – 0.48	v
SSTI 2.2 Output Valtage ⁵	V _{OH}	V _{TT} + 0.48	—	—	V
SSTL-3.3 Output Voltage ⁵	V _{OL}	—	—	V _{TT} – 0.48	V
Powerup Time	From time V _{DD} crosses min spec supply	_	_	2	ms
OE Deassertion to Clk Stop		_	_	250 + 3 x T _{CLK}	ns
Return from Output Driver Stopped Mode		_	_	250 + 3 x T _{CLK}	ns
Return From Tri-State Time			_	12 + 3 x T _{CLK}	μs
Return From Powerdown Time			_	2	ms
	Non-CMOS	_	1	2	ps RMS
Period Jitter (1-sigma)	CMOS, C _L = 7 pF	_	1	3	ps RMS
	1.0 MHz – min(20 MHz, 0.4 x F _{OUT}),non-CMOS	_	0.6	1	ps RMS
Integrated Phase Jitter	1.0 MHz – min(20 MHz, 0.4 x F _{OUT}),CMOS format	_	0.7	1.5	ps RMS

Notes:

1. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, first-year aging at 25 °C, shock, vibration, and one solder reflow.

2. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, ten-year aging at 85 °C, shock, vibration, and one solder reflow.

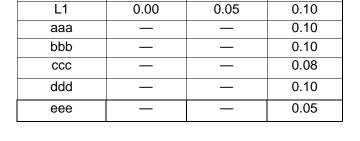
3. See "AN409: Output Termination Options for the Si500S and Si500D Silicon Oscillators" for further details regarding output clock termination recommendations.


4. $V_{TT} = .5 \times V_{DD}$.

5. $V_{TT} = .45 \times V_{DD}$.

Max

Package Specifications

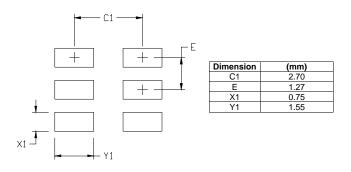

Table 1. Package Diagram Dimensions (mm)

Dimension

Dimension	Min	Nom	Max
A	0.80	0.85	0.90
A1	0.00	0.03	0.05
b	0.59	0.64	0.69
D	3.20 BSC.		
е	1.27 BSC.		
Е	4.00 BSC.		
L	0.95 1.00 1.05		

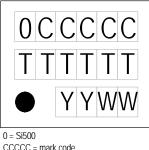
Table 2. Pad Connections

1	OE
2	NC—Make no external connection to this pin
3	GND
4	Output
5	Complementary Output
6	VDD



Nom

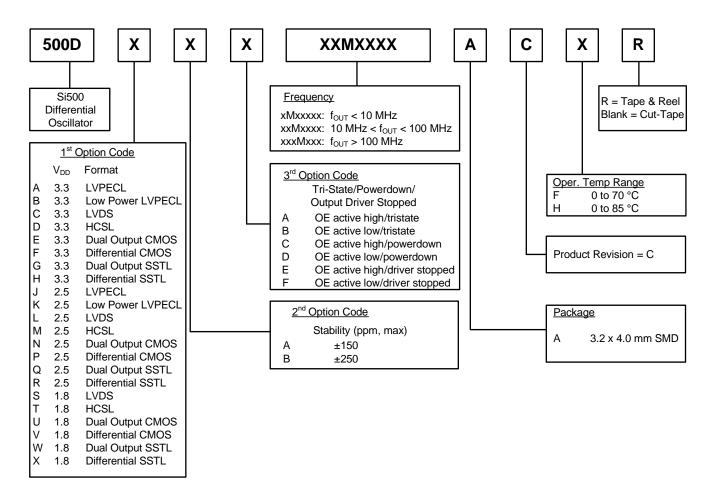
Min


Table 3. Tri-State/Powerdown/Driver Stopped Function on OE (3rd Option Code)

	Α	В	С	D	Е	F
Open	Active		Active	Active	Active	Active
1 Level	Active	Tri- State	Active	Power- down	Active	Driver Stopped
0 Level	Tri- State	Active	Power- down	Active	Driver Stopped	Active

Figure 1. Recommended Land Pattern

CCCCC = mark code TTTTTT = assembly manufacturing code YY = year WW = work week


Figure 2. Top Mark

Environmental Compliance

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002.4
Mechanical Vibration	MIL-STD-883, Method 2007.3 A
Resistance to Soldering Heat	MIL-STD-202, 260 C° for 8 seconds
Solderability	MIL-STD-883, Method 2003.8
Damp Heat	IEC 68-2-3
Moisture Sensitivity Level	J-STD-020, MSL 3

Ordering Information

The Si500D supports a variety of options including frequency, output format, supply voltage, and tristate/powerdown. Specific device configurations are programmed into the Si500D at time of shipment. Configurations are specified using the figure below. Silicon Labs provides a web-based part number utility that can be used to simplify part number configuration. Refer to www.silabs.com/SiliconXOPartnumber to access this tool. The Si500D XO series is supplied in a ROHS-compliant, Pb-free, 6-pad, 3.2 x 4.0 mm package. Tape and reel packaging is available as an ordering option.

DOCUMENT CHANGE LIST

Revision 0.2 to Revision 0.3

- Revision B to Revision C updated in Ordering Information
- 0 to 85 C° Operating Temperature Range option added

Revision 0.3 to Revision 1.0

- Clarified SSTL specifications.
- Revised Differential CMOS supply current values.
- Clarified Differential CMOS supply current loading conditions.

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

