

SN54LS113A, SN54S113, SN74LS113A, SN74S113A

Dual J-K Negative-Edge-Triggered Flip-Flops with Preset

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset input sets the outputs regardless of the levels of the other inputs. When preset (PRE) is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

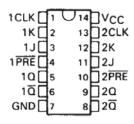
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54LS113A, SN54S113, SN74LS113A, SN74S113A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

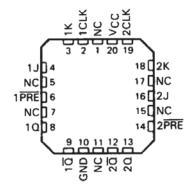
D2661, APRIL 1982 - REVISED MARCH 1988

- Fully Buffered to Offer Maximum Isolation from External Disturbance
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

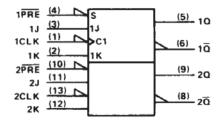

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset input sets the outputs regardless of the levels of the other inputs. When preset (PRE) is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54LS113A and SN54S113 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS113A and SN74S113A are characterized for operation from 0°C to 70°C.

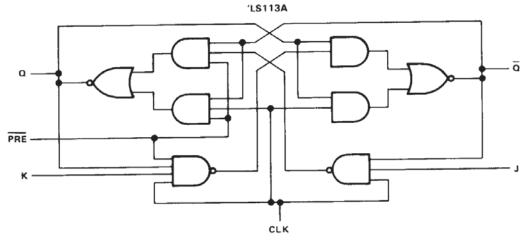

FUNCTION TABLE (each flip-flop)

	INPUT	ОUТ	PUTS		
PRE	CLK	J	K	Q	ā
L	Х	Х	X	Н	L
Н	1	L	L	σo	\overline{a}_0
н	1	Н	Ł	н	L
н	1	L	н	L	н
н	1	Н	H	TOGGLE	
н	Н	X	х	QΟ	\overline{a}_0

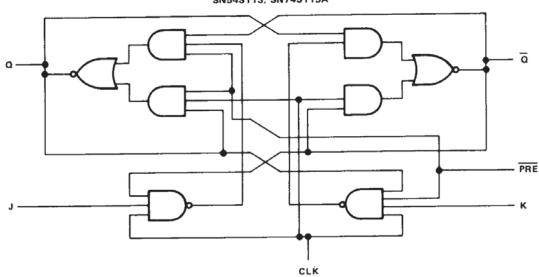
SN54LS113A, SN54S113 . . . J OR W PACKAGE SN74LS113A, SN74S113A . . . D OR N PACKAGE (TOP VIEW)



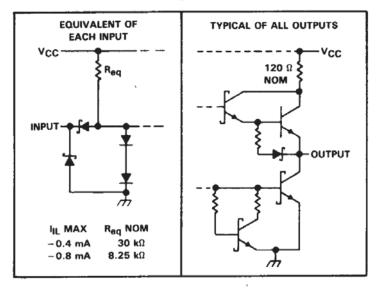
SN54LS113A, SN54S113 . . . FK PACKAGE (TOP VIEW)


NC - No internal connection

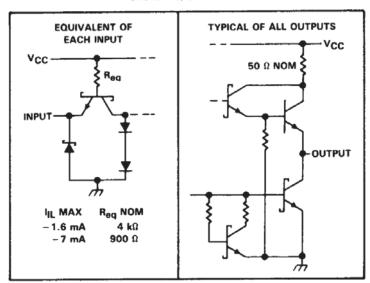
logic symbol†


 $^{\dagger}\text{This}$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


SN54S113, SN74S113A

TTL Devices



schematics of inputs and outputs

'LS113A

SN54S113, SN74S113A

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	V
Input voltage: 'LS113A 7	V
SN54S113, SN74S113A	V
Operating free-air temperature range: SN54' 55°C to 125°	
SN74'	C
Storage temperature range65°C to 150°	

NOTE 1: Voltage values are with respect to network ground terminals.

SN54LS113A, SN74LS113A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

recommended operating conditions

			SN54LS113A			SN74LS113A			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			8.0	٧
ЮН	High-level output current				-0.4			-0.4	mA
OL	Low-level output current				4			8	mA
fclock	Clock frequency		0		30	0		30	MH
CIOCK	Pulse duration	CLK high	20		**************************************	20	-		ns
tw		PRE or CLR low	25			25			11.5
		Data high or low	20			20			ns
t _{su}	Set up time-before CLK1		20			20			113
th	Hold time-data after CLK1		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

-					SN	154LS11	3A	SN	74LS11	3A	UNIT
PARAMETER		TEST	CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	7P* MAX -1.5 3.4 0.25 0.4 0.35 0.5 0.1 0.3 0.4 20	UNIT
VIK		VCC = MIN,	I _I = -18 mA				-1.5			- 1.5	٧
VOH		V _{CC} = MIN, I _{OH} = -0.4 mA	V _{IH} = 2 V,	VIL = MAX,	2.5	3.4		2.7	3.4		V
		V _{CC} = MIN, I _{OL} = 4 mA	V _{IL} = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	v
VOL		V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	
	J or K	VCC = MAX,	V _I = 7 V				0.1			0.1	
14	PRE					20	0.3			0.3	mA
,	CLK				5555		0.4		-94	0.4	
	J or K						20			20	
۱н	PRÉ	VCC = MAX,	V ₁ = 2.7 V				60			60	μΑ
100	CLK						80	1.00	·	80	
	J or K		V ₁ = 0.4 V				-0.4			-0.4	mA
ΊL	PRE or CLK	VCC = MAX,	VI = 0.4 V	75.4 =			-0.8			-0.8	
los§		VCC = MAX,	see Note 2		- 20	122	- 100	- 20		- 100	mA
	Total)	VCC = MAX,	see Note 3			4	6	los de la companya de	4	6	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

NOTES: 2. For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_O = 2.25 V and 2.125 V for the '54 family and the '74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

SN54LS113A, SN74LS113A **DUAL J-K NEGATIVE-EDGE-TRIGGERED** FLIP-FLOPS WITH PRESET

switching characteristics, VCC = 5 V, TA = 25 °C (see Note 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST (MIN	TYP	MAX	UNIT	
fmax					30	45		MHz
†PLH		0 · · · · · · ·	$R_{L} = 2 k\Omega$,	$C_L = 15 pF$		15	20	ns
tPHL	PRE or CLK	Q or Q				15	20	ns

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

SN54S113, SN74S113A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

recommended operating conditions

			SN54S113			SN74S113A			UNIT
		1	MIN	NOM	MAX	MIN	NOM	MAX	UNII
VÇC	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2	963220		٧
VIL	Low-level input voltage			9124 - 13	0.8			0.8	V
ОН	High-level output current				- 1			- 1	mA
OL	Low-level output current	10000			20			20	mA
00	Pulse duration	CLK high	6		4	6			
tw		CLK low	6.5			6.5	2000		ns
**		PRE low	8			8			
t _{su}	Set up time-before CLK↓	Data high or low	7			7			ns
th.	Hold time-data after CLK1		0			0			ns
TA	Operating free-air temperature		- 55		125	0	-0.00	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS†			SN54S11	3	SI	UNIT					
PA	RAMETER	TEST	CONDITIONS		MIN	TYP [‡]	MAX	MIN TYP! MAX		UNIT	
VIK		V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	٧
VOH	A 1711	V _{CC} = MIN, I _{OH} = -1 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.5	3.4		2.7	3.4		v
VOL		V _{CC} = MIN, l _{OL} = 20 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.5			0.5	٧
11		VCC = MAX,	V _I = 5.5 V				1			1	mA
	J or K		V ₁ = 2.7 V			50			50	μА	
ŀН	PRE or CLK	VCC = MAX,				100			100	<i>p.</i> .	
	J or K						-1.6			- 1.6	
lii.	PRE 5	VCC = MAX,	$V_{I} = 0.5 V$				-7			-7	mA
ΊL	CLK §	1.00				-4				-4	
los¶		VCC = MAX			-40	- 22	- 100	-40		- 100	mA
Icc#		VCC = MAX,	see Note 3			15	25		15	25	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see Note 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	72.2			80	125		MHz
tPLH	PRE	Q or Q			4	7	ns
	PRE (CLK high)	⊼ 0	$R_{L} = 280 \Omega, C_{L} = 15 pF$		5	7	ns
tPHL	PRE (CLK low)	□ or a	H_ = 200 tt,		5	7	,,,,
tPLH		0 7			4	7	ns
tPHL	CLK	Q or Q			5	7	ns

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Clear is tested with preset high and preset is tested with clear high.

Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

[#]Values are average per flip-flop.

NOTE 3: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is