4-BIT MICROCONTROLLER

1. GENERAL DESCRIPTION

The W742S81A is a high-performance 4-bit microcontroller $(\mu \mathrm{C})$ that provides an LCD driver. The device contains a 4-bit ALU, two 8-bit timers, two dividers (for two oscillators) in dual-clock operation, a 40×4 LCD driver, six 4-bit I/O ports (including 1 output port for LED driving), and one channel DTMF generator. There are also five interrupt sources and 16 -levels subroutine nesting for interrupt applications. The W742S81A operates on very low current and has two power reduction modes, that is the dual-clock slow operation and STOP mode, which help to minimize power dissipation.

2. FEATURES

- Operating voltage: $2.4 \mathrm{~V}-5.5 \mathrm{~V}$
- Dual-clock operation or single-clock operation (By option)
- Main-oscillator
- Connect to 3.58 MHz crystal or 400 KHz that can be selected by option code
- Crystal or RC oscillator can be selected by code option
- Sub-oscillator
- Connect to 32768 Hz crystal only
- Memory
- 16384×16 bits program electrical erasable EPROM (including 64K x 4 bit look-up table)
- 2048×4 bits data RAM (including 16 nibbles x 16 pages working registers)
- 40×4 LCD data RAM
- 24 input/output pins
- Port for input only: 1 ports/4 pins(RC)
- Input/output ports: 3 ports/12 pins(RA, RB \& RD)
- High sink current output port for LED driving: 1 port /4 pins(RE)
- Port for output only: 1 port/ 4 pins(RF)
- Power-down mode
- Hold function: no operation (main-oscillator and sub-oscillator still operate)
- Stop function: no operation (main-oscillator and sub-oscillator are stopped)
- Dual-clock slow operation mode: system is operated by the sub-oscillator (FOSC=Fs and Fm is stopped)
- Five types of interrupts
- Four internal interrupts (Divider0, Divider1, Timer 0, Timer 1)
- One external interrupts (RC Port)
- LCD driver output
- 40 segments x 4 commons
$-1 / 4$ duty $1 / 3$ bias driving mode
- Clock source should be the sub-oscillator clock in the dual-clock operation mode
- MFP output pin
- Output is software selectable as modulating or nonmodulating frequency
- Works as frequency output specified by Timer 1
- DTMF output pin
- Output is one channel Dual Tone Multi-Frequency signal for dialling
- Two built-in 14-bit frequency dividers
- Divider0: the clock source is the output of the main-oscillator
- Divider1: the clock source is the output of the sub-oscillator (dual-clock mode) or the Fosc/128 (single-clock mode)
- Two built-in 8-bit programmable countdown timers
- Timer 0: one of two internal clock frequencies (FOSC/4 or FOSC/1024) can be selected
- Timer 1: with auto-reload function and one of three internal clock frequencies (FOSC, Fosc/64 or Fs) can be selected by MR1 register; and the specified frequency can be delivered to MFP pin
- Built-in 18/15-bit watchdog timer selectable for system reset; enable the watch dog timer or not is determined by code option
- Powerful instruction set
- 16-levels subroutine (include interrupt) nesting

3. PIN CONFIGURATION

Publication Release Date: March 2003

- 3 -

Revision A1

4. PIN DESCRIPTION

SYMBOL	I/O	FUNCTION
XIN2	I	Input pin for sub-oscillator. Connected to 32.768 KHz crystal only.
XOUT2	O	Output pin for sub-oscillator with internal oscillation capacitor. Connected to 32.768 KHz crystal only.
XIN1	I	Input pin for main-oscillator. Connected to 3.58MHz or 400KHz crystal or RC to generate system clock.
XOUT1	O	Output pin for main-oscillator. Connected to 3.58MHz or 400KHz crystal or RC to generate system clock.
RA0-RA3	I/O	Input/Output port. Input/output mode specified by port mode 1 register (PM1).
RB0-RB3	I	Input/Output port. Input/output mode specified by port mode 2 register (PM2).
RC0-RC3	4-bit port for input only. Each pin has an independent interrupt capability.	
RD0-RD3	I/O	Input/Output port. Input/output mode specified by port mode 5 register (PM5).
RE0-RE3	O	Output port only. With high sink current capacity for the LED application.
Op0-RF3	O	Output port only. This pin can output modulating or nonmodulating frequency, or Timer 1 specified frequency.
MFP	It can be selected by bit 0 of BUZCR (BUZCR.0).	

W742S81A

5. BLOCK DIAGRAM

Publication Release Date: March 2003
-5 -
Revision A1

6. FUNCTIONAL DESCRIPTION

6.1 Program Counter (PC)

Organized as an 14-bit binary counter (PC0 to PC13), the program counter generates the addresses of the 16384×16 on-chip ROM containing the program instruction words. Before the jump or subroutine call instructions are to be executed, the destination ROM page must be determined firstly. The confirmation of the ROM page can be done by executing the MOV ROMPR, \#I or MOV ROMPR, R instruction. When the interrupt or initial reset conditions are to be executed, the corresponding address will be loaded into the program counter directly. The format used is shown below.

ITEM	ADDRESS	INTERRUPT PRIORITY
Initial Reset	0000 H	-
INT 0 (Divider0)	0004 H	1 st
INT 1 (Timer 0)	0008 H	2nd
INT 2 (Port RC)	000 CH	3rd
INT 3 (Divider1)	0014 H	4 th
INT 4 (Timer 1)	0020 H	5th
JP Instruction	XXXXH	-
Subroutine Call	XXXXH	-

Table 1 Vector address and interrupt priority

6.2 Stack Register (STACK)

The stack register is organized as 49 bits x 16 levels (first-in, last-out). When either a call subroutine or an interrupt is executed, the program counter will be pushed onto the stack register automatically. At the end of a call subroutine or an interrupt service subroutine, the RTN instruction must be executed to pop the contents of the stack register into the program counter. (Refer to Table 8) When the stack register is pushed over the sixteen levels, the contents of the first level will be lost. In other words, the stack register is always sixteen levels deep.

6.3 Program Memory (ROM)

The read-only memory (ROM) is used to store program codes; and the look-up table is arranged as 65536 x 4 bits. The program ROM is divided into eight pages; the size of each page is 2048×16 bits. So the total ROM size is 16384×16 bits. Before the jump or subroutine call instructions are to be executed, the destination ROM page must be determined firstly. The ROM page can be selected by executing the MOV ROMPR,\#I or MOV ROMPR, R instruction. But the branch decision instructions (e.g. JB0, SKB0, JZ, JC, ...) must jump to the same ROM page which the branch decision instructions are in. The whole ROM can store both instruction codes and the look-up table. Each look-up table element is composed of 4 bits, so the look-up table can be addressed up to 65536 elements. Instruction MOVC R is used to read the look-up table content and transfer table data to the RAM. But before reading the addressed look-up table content, the content of the look-up table pointer (TAB) must be determined firstly. The address of the look-up table element is allocated by the content of TAB. The MOV TAB0 (TAB1, TAB2, TAB3), R instructions are used to allocate the address of the wanted look-up table element. The TAB0 register stores the LSB 4 bits of the look-up table address. The organization of the program memory is shown in Figure 6-1.

Figure 6-1 Program Memory Organization

6.3.1 ROM Page Register (ROMPR)

The ROM page register is organized as a 4-bit binary register. The bit descriptions are as follows:

Note: W means write only
Bit 3 is reserved.
Bit 2, Bit 1, Bit 0 ROM page preselect bits:

$$
\begin{aligned}
& 000=\text { ROM page } 0(0000 \mathrm{H}-07 \mathrm{FFH}) \\
& 001=\text { ROM page } 1(0800 \mathrm{H}-0 \mathrm{FFFH}) \\
& 010=\text { ROM page } 2(1000 \mathrm{H}-17 \mathrm{FFH}) \\
& 011=\text { ROM page } 3(1800 \mathrm{H}-1 \mathrm{FFFH}) \\
& 100=\text { ROM page } 4(2000 \mathrm{H}-27 \mathrm{FFH}) \\
& 101=\text { ROM page } 5(2800 \mathrm{H}-2 \mathrm{FFFH}) \\
& 110=\text { ROM page } 6(3000 \mathrm{H}-37 \mathrm{FFH})
\end{aligned}
$$

$$
111=\text { ROM page } 7(3800 \mathrm{H}-3 \mathrm{FFFH})
$$

6.4 Data Memory (RAM)

6.4.1 Architecture

The static data memory (RAM) used to store data is arranged as 2048×4 bits. The data RAM is divided into sixteen banks; each bank has 128×4 bits. Executing the MOV DBKR,WR or MOV DBKR,\#I instruction can determine which data bank is used. The data memory can be addressed directly or indirectly. But the data bank must be confirmed firstly; and the page in the data bank will be done in the indirect addressing mode, too. In indirect addressing mode, each data bank will be divided into eight pages. Before the data memory is addressed indirectly, the page which the data memory is in must be confirmed. The organization of the data memory is shown in Figure 6-2.

Figure 6-2 Data Memory Organization
The 1 st and 2 nd data bank $(00 \mathrm{H}$ to $7 \mathrm{FH} \& 80 \mathrm{H}$ to FFH$)$ in the data memory can also be used as the working registers (WR). It is also divided into sixteen pages. Each page contains 16 working registers. When one page is used as WR, the others can be used as the normal data memory. The WR page can be switched by executing the MOV WRP,R or MOV WRP, \#I instruction. The data memory cannot operate directly with immediate data, but the WR can do. The relationship between data memory locations and the page register (PAGE) in indirect addressing mode is described in the next sub-section.

6.4.2 Page Register (PAGE)

The page register is organized as a 4-bit binary register. The bit descriptions are as follows:

Note: R/W means read/write available.
Bit 3 is reserved.
Bit 2, Bit 1, Bit 0 Indirect addressing mode preselect bits:

$$
\begin{aligned}
& 000=\text { Page } 0(00 \mathrm{H}-0 \mathrm{FH}) \\
& 001=\text { Page } 1(10 \mathrm{H}-1 \mathrm{FH}) \\
& 010=\text { Page } 2(20 \mathrm{H}-2 \mathrm{FH}) \\
& 011=\text { Page } 3(30 \mathrm{H}-3 \mathrm{FH}) \\
& 100=\text { Page } 4(40 \mathrm{H}-4 \mathrm{FH}) \\
& 101=\text { Page } 5(50 \mathrm{H}-5 \mathrm{FH}) \\
& 110=\text { Page } 6(60 \mathrm{H}-6 \mathrm{FH}) \\
& 111=\text { Page } 7(70 \mathrm{H}-7 \mathrm{FH})
\end{aligned}
$$

6.4.3 WR Page Register (WRP)

The WR page register is organized as a 4-bit binary register. The bit descriptions are as follows:

	3	2	1	0
W	WRP	R	R/W	R/W
	R/W			

Note: R/W means read/write available.
Bit 3, Bit 2, Bit 1, Bit 0 Working registers page preselect bits:

$$
\begin{aligned}
& 0000=\text { WR Page } 0(00 \mathrm{H}-0 \mathrm{FH}) \\
& 0001=\text { WR Page } 1(10 \mathrm{H}-1 \mathrm{FH}) \\
& 0010=\text { WR Page } 2(20 \mathrm{H}-2 \mathrm{FH}) \\
& 0011=\text { WR Page } 3(30 \mathrm{H}-3 \mathrm{FH}) \\
& 0100=\text { WR Page } 4(40 \mathrm{H}-4 \mathrm{FH}) \\
& 0101=\text { WR Page } 5(50 \mathrm{H}-5 \mathrm{FH}) \\
& 0110=\text { WR Page } 6(60 \mathrm{H}-6 \mathrm{FH}) \\
& 0111=\text { WR Page } 7(70 \mathrm{H}-7 \mathrm{FH}) \\
& 1000=\text { WR Page } 8(80 \mathrm{H}-8 \mathrm{FH}) \\
& 1001=\text { WR Page } 9(90 \mathrm{H}-9 \mathrm{FH}) \\
& 1010=\text { WR Page A }(\mathrm{A} 0 \mathrm{H}-\mathrm{AFH}) \\
& 1011=\text { WR Page }(\mathrm{B} 0 \mathrm{H}-\mathrm{BFH}) \\
& 1100=\text { WR Page C }(\mathrm{C} 0 \mathrm{H}-\mathrm{CFH}) \\
& 1101=\text { WR Page } \mathrm{D}(\mathrm{D} 0 \mathrm{H}-\mathrm{DFH}) \\
& 1110=\text { WR Page } \mathrm{E}(\mathrm{E} 0 \mathrm{H}-\mathrm{EFH}) \\
& 1111=\text { WR Page } \mathrm{F}(\mathrm{~F} 0 \mathrm{H}-\mathrm{FFH})
\end{aligned}
$$

6.4.4 Data Bank Register (DBKR)

The data bank register is organized as a 4-bit binary register. The bit descriptions are as follows:

	3	2	1	0
	W	W	W	W

Note: R/W means read/write available.
Bit 3, Bit 2, Bit 1, Bit 0 Data memory bank preselect bits:

$$
\begin{aligned}
& 0000=\text { Data bank } 0(000 \mathrm{H}-07 \mathrm{FH}) \\
& 0001=\text { Data bank } 1(080 \mathrm{H}-0 \mathrm{FFH}) \\
& 0010=\text { Data bank } 2(100 \mathrm{H}-17 \mathrm{FH}) \\
& 0011=\text { Data bank } 3(180 \mathrm{H}-1 \mathrm{FFH}) \\
& 0100=\text { Data bank } 4(200 \mathrm{H}-27 \mathrm{FH}) \\
& 0101=\text { Data bank } 5(280 \mathrm{H}-2 \mathrm{FFH}) \\
& 0110=\text { Data bank } 6(300 \mathrm{H}-37 \mathrm{FH}) \\
& 0111=\text { Data bank } 7(380 \mathrm{H}-3 \mathrm{FFH}) \\
& 1000=\text { Data bank } 8(400 \mathrm{H}-47 \mathrm{FH}) \\
& 1001=\text { Data bank } 9(480 \mathrm{H}-4 \mathrm{FFH}) \\
& 1010=\text { Data bank A }(500 \mathrm{H}-57 \mathrm{FH}) \\
& 1011=\text { Data bank B }(580 \mathrm{H}-5 \mathrm{FFH}) \\
& 1100=\text { Data bank C }(600 \mathrm{H}-67 \mathrm{FH}) \\
& 1101=\text { Data bank D }(680 \mathrm{H}-6 \mathrm{FFH}) \\
& 1110=\text { Data bank E }(700 \mathrm{H}-77 \mathrm{FH}) \\
& 1111=\text { Data bank F }(780 \mathrm{H}-7 \mathrm{FFH})
\end{aligned}
$$

6.5 Accumulator (ACC)

The accumulator (ACC) is a 4-bit register used to hold results from the ALU and transfer data between the memory, I/O ports, and registers.

6.6 Arithmetic and Logic Unit (ALU)

This is a circuit which performs arithmetic and logic operations. The ALU provides the following functions:
-Logic operations: ANL, XRL, ORL
-Branch decisions: JB0, JB1, JB2, JB3, JNZ, JZ, JC, JNC, DSKZ, DSKNZ, SKB0, SKB1, SKB2, SKB3
-Shift operations: SHRC, RRC, SHLC, RLC
-Binary additions/subtractions: ADC, SBC, ADD, SUB, ADU, DEC, INC
After any of the above instructions are executed, the status of the carry flag (CF) and zero flag (ZF) is stored in the internal registers. CF can be read out by executing MOV R, CF.

6.7 Main-Oscillator

The W742S81A provides a crystal or RC oscillation circuit to generate the system clock through external connections. If a crystal oscillator is used, The 3.58 MHz or 400 KHz crystal must be connected to XIN1 and XOUT1, and a capacitor must be connected to XIN1 and Vss if an accurate frequency is needed.

Figure 6-3 System Clock Oscillator Configuration

6.8 Sub-Oscillator

The sub-oscillator is used in dual-clock operation mode. In the sub-oscillator application, just only the 32768 Hz crystal could be connected to XIN2 and XOUT2, and it can not be oscillated in STOP mode.

6.9 Dividers

Each divider is organized as a 14-bit binary up-counter designed to generate periodic interrupts. When the main oscillator starts action, the Divider0 is incremented by each clock (FOSC). When an overflow occurs, the Divider0 event flag is set to $1(\mathrm{EVF} .0=1)$. Then, if the Divider0 interrupt enable flag has been set (IEF. $0=1$), the interrupt is executed, while if the hold release enable flag has been set (HEF. $0=1$), the hold state is terminated. And the last 4-stage of the Divider0 can be reset by executing CLR DIVR0 instruction.
If the sub-oscillator starts action, the Divider1 is incremented by each clock (Fs in dual-clock mode or Fosc/128 in single-clock mode). When an overflow occurs, the Dividerl event flag is set to 1 (EVF. $4=1$). Then, if the Divider1 interrupt enable flag has been set (IEF. $4=1$), the interrupt is executed, while if the hold release enable flag has been set (HEF. $4=1$), the hold state is terminated. And the last 4-stage of the Divider 1 can be reset by executing CLR DIVR1 instruction. Same as EVF.0, the EVF. 4 is set to 1 periodically. But there are two period time ($125 \mathrm{mS} \& 500 \mathrm{mS}$) that can be selected by setting the SCR. 3 bit. When SCR. $3=0$ (default), the 500 mS period time is selected; $\mathrm{SCR} .3=1$, the 125 mS period time is selected.

6.10 Dual-clock operation

This operation mode is selected by option code. In the dual-clock mode, the clock source of the LCD frequency selector should be the sub-oscillator clock (32768 Hz) only. But in the signal-clock mode, the clock source of the LCD frequency selector will be $\mathrm{Fm} / 128$ (Fm : main oscillator clock, See figure 6-4). So before the STOP instruction is executing, the LCD must be turned off in the signal-clock mode or dual-clock mode.
In this dual-clock mode, the normal operation is performed by generating the system clock from the mainoscillator clock (Fm). As required, the slow operation can be performed by generating the system clock from the sub-oscillator clock (Fs). The exchange of the normal operation and the slow operation is performed by resetting or setting the bit 0 of the System clock Control Register (SCR). If the SCR. 0 is reset
to 0 , the clock source of the system clock generator is main-oscillator clock; if the SCR. 0 is set to 1 , the clock source of the system clock generator is sub-oscillator clock. In the dual-clock mode, the mainoscillator can stop oscillating when the STOP instruction is executing or the SCR. 1 is set to 1 . When the SCR is set or reset, we must care the following cases:

1. X000B \rightarrow X011B: we should not exchange the Fosc from Fm into Fs and disable Fm simultaneously. We could first exchange the FOSC from Fm into Fs, then disable the main-oscillator. So it should be $\mathrm{X} 000 \mathrm{~B} \rightarrow \mathrm{X} 001 \mathrm{~B} \rightarrow \mathrm{X} 011 \mathrm{~B}$.
2. $\mathrm{X} 011 \mathrm{~B} \rightarrow \mathrm{X} 000 \mathrm{~B}$: we should not enable Fm and exchange the Fosc from Fs into Fm simultaneously. We could first enable the main-oscillator; the 2nd step is calling a delay subroutine to wait the mainoscillator oscillating stably; then exchange the Fosc from Fs into Fm is the last step. So it should be $\mathrm{X} 011 \mathrm{~B} \rightarrow \mathrm{X} 001 \mathrm{~B} \rightarrow$ delay the Fm oscillating stably time $\rightarrow \mathrm{X} 000 \mathrm{~B}$. The suggestion of the Fm oscillating stably time is $\quad 3.5 \mathrm{~ms}$ for 455 K Hz and 0.8 ms for 4 M Hz .
We must remember that the X010B state is inhibitive, because it will induce the system shutdown. The organization of the dual-clock operation mode is shown in Figure 6-4.

Figure 6-4 Organization of the dual-clock operation mode

6.11 WatchDog Timer (WDT) and WatchDog Timer Register(WDTR)

The watchdog timer (WDT) is organized as a 4-bit up counter designed to prevent the program from unknown errors. When the corresponding option code bit of the WDT set to 1 , the WDT is enabled, and if the WDT overflows, the chip will be reset. At initial reset, the input clock of the WDT is Fosc/2048. The input clock of the WDT can be switched to Fosc/16384 (or FOSC/2048) by setting WDTR. 3 to 1. The contents of the WDT can be reset by the instruction CLR WDT. In normal operation, the application program must reset WDT before it overflows. A WDT overflow indicates that operation is not under control and the chip will be reset. The WDT overflow period is 1 S when the sub-system clock (Fs) is 32 KHz and WDT clock input is Fs/2048. When the corresponding option code bit of the WDT set to 0 , the WDT function is disabled. The organization of the Divider0 and watchdog timer is shown in Figure 6-5.

Figure 6-5 Organization of Divider0, Divider1 and WatchDog Timer

3	2	1	0	
WDTR	R/W	R/W	R/W	R

Note: R/W means read/write available, R means read only.
Power On reset default is : 0000
Bit $3=0 \quad$ Fosc/2048(Select Divider0) or Fss/2048(Select Divider1) as the WDT source.
$=1$ FOSC/16384(Select Divider0) or Fss/16384(Select Divider1) as the WDT source.
Bit $2=0 \quad$ Select Divider0.
$=1$ Select Divider 1 .
Bit $1=0 \quad$ Refer to Table 2.
$=1$ Refer to Table 2.

Bit $0=0 \quad$ No time out.
$=1$ Time out.
WDTR. 0 will be set to one when WDT time out and can be reset to zero by:
Power On Reset, RESET pin, CLR WDT

Reset item	WDTR. 1 = 1	WDTR. $1=0$
Program Counter (PC)	0000H	0000H
Stack Pointer (SP)	-	Reset
ROMPR, PAGE, DBKR, WRP, ACC, CF, ZF, SCR registers	-	Reset
IEF, HEF, SEF, HCF, PEF, EVF flags	IEF $=$ Reset	Reset
DIV0, DIV1	-	Reset
TM0, TM1, MR0, MR1 registers	-	Reset
Timer 0 input clock	-	Fosc/4
Timer 1 input clock	-	Fosc
MFP output	-	Low
PM0 register	-	Reset
PM1, PM2, PM5 registers	-	Set (1111B)
PSR0 register	-	Reset
Input/output ports RA, RB, RD	-	Input mode
Output ports RE, RF	-	High
RA, RB ports output type	-	CMOS type
RC port pull-high resistors	-	Disable
Input clock of the watchdog timer	-	Fosc/2048
DTMF output	-	Hi-Z
BUZCR register	-	Reset
FLCD	-	Q5 to Q9 Reset
LCD display	-	OFF
LCDR	-	Reset
Segment output mode	-	LCD drive output

-: keep the status
Note: SCR. 2 is reserved
Table 2 The bit 1 of WatchDog Timer Register (WDTR) reset item

6.12 Timer/Counter

6.12.1 Timer 0 (TM0)

Timer 0 (TM0) is a programmable 8-bit binary down-counter. The specified value can be loaded into TM0 by executing the MOV TMOL(TMOH),R instructions. When the MOV TMOL(TMOH),R instructions are executed, it will stop the TM0 down-counting (if the TM0 is down-counting) and reset the MR0.3 to 0 , and the specified value can be loaded into TM0. Then we can set MR0.3 to 1 , that will cause the event flag 1 (EVF.1) is reset and the TM0 starts to count. When it decreases and underflow to FFH, Timer 0 stops operating and generates an underflow (EVF. $1=1$). Then, if the Timer 0 interrupt enable flag has been set (IEF. $1=1$), the interrupt is executed, while if the hold release enable flag 1 has been set (HEF. $1=1$), the hold state is terminated. The Timer 0 clock input can be set as Fosc/1024 or FOSC/4 by setting MR0.0 to 1 or resetting MR0.0 to 0 . The default timer value is FOSC/4. The organization of Timer 0 is shown in Figure 6-6.

If the Timer 0 clock input is FOSC/4:
Desired Timer 0 interval $=($ preset value +1$) \times 4 \times 1 /$ FOSC
If the Timer 0 clock input is FOSC/1024:
Desired Timer 0 interval $=($ preset value +1$) \times 1024 \times 1 /$ FOSC
Preset value: Decimal number of Timer 0 preset value
Fosc: Clock oscillation frequency

Figure 6-6 Organization of Timer 0

6.12.2 Timer 1 (TM1)

Timer 1 (TM1) is also a programmable 8-bit binary down counter, as shown in Figure 6-7. Timer 1 can
be used as to output an arbitrary frequency to the MFP pin. The input clock of Timer 1 can be one of three sources: FOSC/64, FOSC, or Fs. The source can be selected by setting bit 0 and bit 1 of mode register 1 (MR1). At initial reset, the Timer 1 clock input is Fosc. When the MOV TM1L, R or MOV TM1H,R instruction is executed, the specified data are loaded into the auto-reload buffer; but the TM1 downcounting will keep going on. If the bit 3 of MR1 is set (MR1.3=1), the content of the auto-reload buffer will be loaded into the TM1 down counter, and Timer 1 starts to down count, and the event flag 7 is reset (EVF.7=0). When the timer decreases and underflow to FFH, it will generate an underflow (EVF. $7=1$) and be auto-reloaded with the specified data, after which it will continue to count down. Then, if interrupt enable flag 7 has been set to 1 (IEF. $7=1$), an interrupt is executed; if hold mode release enable flag 7 is set to $1($ HEF. $7=1)$, the hold state is terminated. The specified frequency of Timer 1 can be delivered to the MFP output pin by programming bit 2 of MR1. Bit 3 of MR1 can be used to make Timer 1 stop or start counting.

In a case where Timer 1 clock input is FT:
Desired Timer 1 interval $=($ preset value +1$) / \mathrm{FT}$
Desired frequency for MFP output pin $=\mathrm{FT} \div($ preset value +1$) \div 2(\mathrm{~Hz})$
Preset value: Decimal number of Timer 1 preset value
FOSC: Clock oscillation frequency

Figure 6-7 Organization of Timer 1
For example, when FT equals 32768 Hz , depending on the preset value of TM1, the MFP pin will output a single tone signal in the tone frequency range from 64 Hz to 16384 Hz . The relation between the tone frequency and the preset value of TM1 is shown in the table below. MOV WR,TM1 can read back the content of TM1, It will save the TM1 MSB to WR and the TM1 LSB to ACC.

		3rd octave			4th octave			5th octave		
		Tone frequency	TM1 preset value \& MFP frequency		Tone frequency	TM1 preset value \& MFP frequency		Tone frequency	TM1 preset value \& MFP frequency	
\mathbf{T}	C	130.81	7CH	131.07	261.63	3EH	260.06	523.25	1EH	528.51
	C \#	138.59	75H	138.84	277.18	3АН	277.69	554.37	1CH	564.96
	D	146.83	6FH	146.28	293.66	37H	292.57	587.33	1BH	585.14
	D \#	155.56	68H	156.03	311.13	34H	309.13	622.25	19H	630.15
0	E	164.81	62H	165.49	329.63	31H	327.68	659.26	18H	655.36
	F	174.61	5DH	174.30	349.23	2EH	372.36	698.46	16H	712.34
N	F \#	185.00	58H	184.09	369.99	2BH	390.09	739.99	15H	744.72
	G	196.00	53H	195.04	392.00	29H	420.10	783.99	14H	780.19
E	G\#	207.65	4EH	207.39	415.30	26H	443.81	830.61	13H	819.20
	A	220.00	49H	221.40	440.00	24H	442.81	880.00	12H	862.84
	A\#	233.08	45H	234.05	466.16	22 H	468.11	932.23	11H	910.22
	B	246.94	41H	248.24	493.88	20 H	496.48	987.77	10H	963.76

Note: Central tone is A4 $(440 \mathrm{~Hz})$.
Table 3 The relation between the tone frequency and the present value of TM1

6.12.3 Mode Register 0 (MR0)

Mode Register 0 is organized as a 4-bit binary register (MR0.0 to MR0.3). MR0 can be used to control the operation of Timer 0 . The bit descriptions are as follows:

Note: W means write only.
Bit $0=0 \quad$ The fundamental frequency of Timer 0 is FOSC/4.
$=1 \quad$ The fundamental frequency of Timer 0 is FOSC/1024.
Bit $1 \&$ Bit 2 are reserved
Bit $3=0 \quad$ Timer 0 stops down-counting.
$=1 \quad$ Timer 0 starts down-counting.

6.12.4 Mode Register 1 (MR1) \& MFP Control Pin (BUZCR)

Mode Register 1 is organized as a 4-bit binary register (MR1.0 to MR1.3). MR1 can be used to control the operation of Timer 1. The bit descriptions are as follows:

Note: W means write only
Bit $0=0 \quad$ The internal fundamental frequency of Timer 1 is Fosc.
$=1$ The internal fundamental frequency of Timer 1 is FOSC/64.
Bit $1=0 \quad$ The fundamental frequency source of Timer 1 is the internal clock.
$=1$ The fundamental frequency source of Timer 1 is the sub-oscillator frequency $\mathrm{Fs}(32768 \mathrm{~Hz})$.
Bit 2 is reserved.
Bit $3=0 \quad$ Timer 1 stops down-counting.
$=1$ Timer 1 starts down-counting.

MFP control pin is organized as a 4-bit binary register.

Note: W means write only
Bit $0=0 \quad$ The specified waveform of the MFP generator is delivered to the MFP output pin. $=1$ The specified frequency of Timer 1 is delivered to the MFP output pin.
Bit 1, Bit 2 \& Bit 3 are reserved.

6.13 Interrupts

The W742S81A provides four internal interrupt sources (Divider 0, Divider 1, Timer 0, Timer 1) and one external interrupt source (port RC). Vector addresses for each of the interrupts are located in the range of program memory (ROM) addresses 004 H to 020 H . The flags IEF, PEF, and EVF are used to control the interrupts. When EVF is set to "1" by hardware and the corresponding bits of IEF and PEF have been set by software, an interrupt is generated. When an interrupt occurs, all of the interrupts are inhibited until the EN INT or MOV IEF, \#I instruction is invoked. The interrupts can also be disabled by executing the DIS INT instruction. When an interrupt is generated in hold mode, the hold mode will be released momentarily and interrupt subroutine will be executed. After the RTN instruction is executed in an interrupt subroutine, the $\mu \mathrm{C}$ will enter hold mode again. The operation flow chart is shown in

Figure $6-9$. The control diagram is shown in

Figure 6-9.

Figure 6-8 Interrupt event control diagram

6.14 Stop Mode Operation

In stop mode, all operations of the $\mu \mathrm{C}$ cease, and the MFP pin is kept to high. The $\mu \mathrm{C}$ enters stop mode when the STOP instruction is executed and exits stop mode when an external trigger is activated (by a falling signal on the RC). When the designated signal is accepted, the $\mu \mathrm{C}$ awakens and executes the next instruction. To prevent erroneous execution, the NOP instruction should follow the STOP command. But In the dual-clock slow operation mode, the STOP instruction will also disable the sub-oscillator oscillating; all operations of the $\mu \mathrm{C}$ cease.

6.14.1 Stop Mode Wake-up Enable Flag for RC Port (SEF)

The stop mode wake-up flag for port RC is organized as an 4-bit binary register (SEF. 0 to SEF.3). Before port RC may be used to make the device exit the stop mode, the content of the SEF must be set first. The SEF is controlled by the MOV SEF, \#I instruction. The bit descriptions are as follows:

Note: W means write only.
SEF. $0=1 \quad$ Device will exit stop mode when falling edge signal is applied to pin RC. 0
SEF. $1=1 \quad$ Device will exit stop mode when falling edge signal is applied to pin RC. 1
SEF. $2=1$ Device will exit stop mode when falling edge signal is applied to pin RC. 2
SEF. $3=1 \quad$ Device will exit stop mode when falling edge signal is applied to pin RC. 3

6.15 Hold Mode Operation

In hold mode, all operations of the $\mu \mathrm{C}$ cease, except for the operation of the oscillator, Timer, Divider, LCD driver, DTMF generator and MFP generator. The $\mu \mathrm{C}$ enters hold mode when the HOLD instruction is executed. The hold mode can be released in one of five ways: by the action of timer 0 , timer 1 , divider 0 , divider 1, the RC port. Before the device enters the hold mode, the HEF, PEF, and IEF flags must be set to define the hold mode release conditions. For more details, refer to the instruction-set table and the following flow chart.

Figure 6-9 Hold Mode and Interrupt Operation Flow Chart

6.15.1 Hold Mode Release Enable Flag (HEF)

The hold mode release enable flag is organized as an 8-bit binary register (HEF. 0 to HEF.7). The HEF is used to control the hold mode release conditions. It is controlled by the MOV HEF, \#I instruction. The bit descriptions are as follows:

	7	6	5	4	3	2	1	0
HEF	W	-	-	W	-	W	W	W

Note: W means write only

HEF. $0=1 \quad$ Overflow from the Divider 0 causes Hold mode to be released.
HEF. $1=1 \quad$ Underflow from Timer 0 causes Hold mode to be released.
HEF. $2=1 \quad$ Signal change at port RC causes Hold mode to be released.
HEF.3, HEF. 5 \& HEF. 6 are reserved.
HEF. $4=1 \quad$ Overflow from the Divider 1 causes Hold mode to be released.
HEF. 7 = $1 \quad$ Underflow from Timer 1 causes Hold mode to be released.

6.15.2 Interrupt Enable Flag (IEF)

The interrupt enable flag is organized as a 8-bit binary register (IEF. 0 to IEF.7). These bits are used to control the interrupt conditions. It is controlled by the MOV IEF, \#I instruction. When one of these interrupts is accepted, the corresponding to the bit of the event flag will be reset, but the other bits are unaffected. In interrupt subroutine, these interrupts will be disable till the instruction MOV IEF, \#I or EN INT is executed again. Otherwise, these interrupts can be disable by executing DIS INT instruction. The bit descriptions are as follows:

Note: W means write only.
IEF. $0=1 \quad$ Interrupt 0 is accepted by overflow from the Divider 0.
IEF. $1=1 \quad$ Interrupt 1 is accepted by underflow from the Timer 0.
IEF. $2=1$ Interrupt 2 is accepted by a signal change at port RC.
IEF.3, IEF. 5 \& IEF. 6 are reserved.
IEF. $4=1 \quad$ Interrupt 4 is accepted by overflow from the Divider 1.
IEF. $7=1 \quad$ Interrupt 7 is accepted by underflow from Timer 1.

6.15.3 Port Enable Flag (PEF)

The port enable flag is organized as 4-bit binary register (PEF. 0 to PEF.3). Before port RC may be used to release the hold mode or preform interrupt function, the content of the PEF must be set first. The PEF is controlled by the MOV PEF, \#I instruction. The bit descriptions are as follows:

Note: W means write only.
PEF.0: Enable/disable the signal change at pin RC. 0 to release hold mode or perform interrupt.
PEF.1: Enable/disable the signal change at pin RC. 1 to release hold mode or perform interrupt.
PEF.2: Enable/disable the signal change at pin RC. 2 to release hold mode or perform interrupt.
PEF.3: Enable/disable the signal change at pin RC. 3 to release hold mode or perform interrupt.

6.15.4 Hold Mode Release Condition Flag (HCF)

The hold mode release condition flag is organized as a 8-bit binary register (HCF. 0 to HCF.7). It indicates by which interrupt source the hold mode has been released, and is loaded by hardware. The HCF can be read out by the MOVA R, HCFL and MOVA R, HCFH instructions. When any of the HCF bits is "1," the hold mode will be released and the HOLD instruction is invalid. The HCF can be reset by the CLR EVF or MOV HEF, \#I (HEF = 0) instructions. When EVF and HEF have been reset, the corresponding bit of HCF is reset simultaneously. The bit descriptions are as follows:

Note: R means read only.
HCF. $0=1$ Hold mode was released by overflow from the divider 0.
HCF. $1=1$ Hold mode was released by underflow from the timer 0.
HCF. $2=1$ Hold mode was released by a signal change at port RC.
HCF. 3 is reserved.
HCF. $4=1$ Hold mode was released by overflow from the divider 1.
HCF. $5=1$ Hold mode was released by underflow from the timer 1.
HCF. 6 and HCF. 7 are reserved.

6.15.5 Event Flag (EVF)

The event flag is organized as a 8-bit binary register (EVF. 0 to EVF.7). It is set by hardware and reset by CLR EVF, \#I instruction or the occurrence of an interrupt. The bit descriptions are as follows:

Note: R means read only.
EVF. $0=1 \quad$ Overflow from divider 0 occurred.
EVF. $1=1$ Underflow from timer 0 occurred.
EVF. $2=1$ Signal change at port RC occurred.
EVF. 3 is reserved.
EVF. $4=1$ Overflow from divider 1 occurred.
EVF. 5 \& EVF. 6 are reserved.
EVF. 7 = 1 Underflow from Timer 1 occurred.

6.16 Reset Function

The W742S81A is reset either by a power-on reset or by using the external RES pin. The initial state of the W742S81A after the reset function is executed is described below.

Program Counter (PC)	000 H
WDTR registers	Reset
BUZCR registers	Reset
ACC, CF, ZF registers	Reset
MR0, MR1, PAGE registers	Reset
PSR0, SCR, TM0, TM1 registers	Reset
IEF, HEF, HCF, PEF, EVF, SEF flags	Reset
WRP, DBKR, PAGE registers	Reset
Timer 0 input clock	FosC/4
Timer 1 input clock	FosC
MFP output	Low
DTMF output	Hi-Z
Input/output ports RA, RB, RD	Input mode
Output port RE \& RF	High
RA, RB ports output type	CMOS type
RC ports pull-high resistors	Disable
Input clock of the watchdog timer	Fosc/2048
LCD display	OFF

Table 4 The initial state after the reset function is executed

6.17 Input/Output Ports RA, RB \& RD

Port RA consists of pins RA. 0 to RA.3. Port RB consists of pins RB. 0 to RB.3. Port RD consists of pins RD. 0 to RD.3. At initial reset, input/output ports RA, RB and RD are all in input mode. When RA, RB are used as output ports, CMOS or NMOS open drain output type can be selected by the PM0 register. But when RD is used as output port, the output type is just fixed to be CMOS output type. Each pin of port RA,

RB and RD can be specified as input or output mode independently by the PM1, PM2 and PM5 registers. The MOVA R, RA or MOVA R, RB or MOVA R, RD instructions operate the input functions and the MOV RA, R or MOV RB, R or MOV RD, R operate the output functions. For more details, refer to the instruction table and Figure 6-10 and Figure 6-11.

Figure 6-10 Architecture of RA (RB) Input/Output Pins

Figure 6-11 Architecture of RD Input/Output pins

6.17.1 Port Mode 0 Register (PM0)

The port mode 0 register is organized as 4-bit binary register (PM0.0 to PM0.3). PM0 can be used to
determine the structure of the input/output ports; it is controlled by the MOV PM0, \#I instruction. The bit descriptions are as follows:

Note: W means write only

Bit $0=0 \quad$ RA port is CMOS output type. Bit $0=1 \quad$ RA port is NMOS open drain output type.
Bit $1=0 \quad$ RB port is CMOS output type. Bit $1=1 \quad$ RB port is NMOS open drain output type.
Bit $2=0 \quad$ RC port pull-high resistor is disabled. Bit $2=1 \quad \mathrm{RC}$ port pull-high resistor is enabled.
Bit 3 is reserved.

6.17.2 Port Mode 1 Register (PM1)

The port mode 1 register is organized as 4-bit binary register (PM1.0 to PM1.3). PM1 can be used to control the input/output mode of port RA. PM1 is controlled by the MOV PM1, \#I instruction. The bit descriptions are as follows:

Note: W means write only
Bit $0=0 \quad$ RA. 0 works as output pin; Bit $0=1 \quad$ RA. 0 works as input pin Bit $1=0 \quad$ RA. 1 works as output pin; Bit $1=1 \quad$ RA. 1 works as input pin Bit $2=0 \quad$ RA. 2 works as output pin; Bit $2=1 \quad$ RA. 2 works as input pin Bit $3=0 \quad$ RA. 3 works as output pin; Bit $3=1 \quad$ RA. 3 works as input pin At initial reset, port RA is input mode $(\mathrm{PM} 1=1111 \mathrm{~B})$.

6.17.3 Port Mode 2 Register (PM2)

The port mode 2 register is organized as 4-bit binary register (PM2.0 to PM2.3). PM2 can be used to control the input/output mode of port RB. PM2 is controlled by the MOV PM2, \#I instruction. The bit descriptions are as follows:

	3	2	1	0
PM2	W	W	W	W

Note: W means write only
Bit $0=0 \quad$ RB. 0 works as output pin; Bit $0=1 \quad$ RB. 0 works as input pin
Bit $1=0 \quad$ RB. 1 works as output pin; Bit $1=1 \quad$ RB. 1 works as input pin
Bit $2=0 \quad$ RB. 2 works as output pin; Bit $2=1 \quad$ RB. 2 works as input pin

Bit $3=0 \quad$ RB. 3 works as output pin; Bit $3=1 \quad$ RB. 3 works as input pin At initial reset, the port RB is input mode $(\mathrm{PM} 2=1111 \mathrm{~B})$.

6.17.4 Port Mode 5 Register (PM5)

The port mode 5 register is organized as 4-bit binary register (PM5.0 to PM5.3). PM5 can be used to control the input/output mode of port RD. PM5 is controlled by the MOV PM5, \#I instruction. The bit descriptions are as follows:

Note: W means write only.
Bit $0=0 \quad$ RD. 0 works as output pin; Bit $0=1 \quad$ RD. 0 works as input pin Bit $1=0 \quad$ RD. 1 works as output pin; Bit $1=1 \quad$ RD. 1 works as input pin Bit $2=0 \quad$ RD. 2 works as output pin; Bit $2=1 \quad$ RD. 2 works as input pin Bit $3=0 \quad$ RD. 3 works as output pin; Bit $3=1 \quad$ RD. 3 works as input pin At initial reset, the port RD is input mode $(\mathrm{PM} 5=1111 \mathrm{~B})$.

6.18 Input Ports RC

Port RC consists of pins RC. 0 to RC.3. Each pin of port RC can be connected to a pull-up resistor, which is controlled by the port mode 0 register (PM0). When the PEF, HEF, and IEF corresponding to the RC port are set, a signal change at the specified pins of port RC will execute the hold mode release or interrupt subroutine. Port status register 0 (PSR0) records the status of ports RC, i.e., any signal changes on the pins that make up the ports. PSR0 can be read out and cleared by the MOV R, PSR0, and CLR PSR0 instructions. In addition, the falling edge signal on the pin of port RC specified by the instruction MOV SEF, \#I will cause the device to exit the stop mode. Refer to Figure 6-12 and the instruction table for more details.

Figure 6-12 Architecture of Input Ports RC

6.18.1 Port Status Register 0 (PSR0)

Port status register 0 is organized as 4-bit binary register (PSR0.0 to PSR0.3). PSR0 can be read or cleared by the MOVA R, PSR0, and CLR PSR0 instructions. The bit descriptions are as follows:

Note: R means read only.

Bit $0=1 \quad$ Signal change at RC. 0
Bit $1=1 \quad$ Signal change at RC. 1
Bit $2=1 \quad$ Signal change at RC. 2
Bit $3=1 \quad$ Signal change at RC. 3

6.19 Output Port RE \& RF

Output port RE is used as an output of the internal RT port. When the MOV RE, R instruction is executed, the data in the RAM will be output to port RT through port RE. It provides a high sink current to drive an LED. RF port is just used as a output port. When the MOV RF, R instruction is executed, the data in the RAM will be output to RF.

6.20 DTMF Output Pin (DTMF)

This pin should output the dual tone multi-frequency signal from the DTMF generator. There is the DTMF register that can specify the wanted low/high frequency. And control whether the dual tone will be output or not. The tones are divided into two groups (Row group and Col group) and one tone from each group is selected to represent a digit. The relation between the DTMF signal and the corresponding touch tone keypad is shown in Figure 6-13.

Figure 6-13 The relation between the touch tone keypad and the frequency

6.20.1 DTMF register

DTMF register is organized as 4-bit binary register. By controlling the DTMF register, one tone of the low/high group can be selected. The MOV DTMF,R instruction can specify the wanted tones. The bit descriptions are as follows:

Note: W means write only.

High group	b3	b2	b1	b0	Selected tone
	X	X	0	0	1209 Hz
	X	X	0	1	1336 Hz
	X	X	1	0	1477 Hz
	X	X	1	1	1633 Hz
Low group	0	0	X	X	697 Hz
	0	1	X	X	770 Hz
	1	0	X	X	852 Hz
	1	1	X	X	941 Hz

Note: X means this bit do not care.

6.20.2 Dual Tone Control Register (DTCR)

Dual tone control register is organized as 4-bit binary register. The output of the dual or single tone will be controlled by this register. The MOV DTCR, \#I instruction can specify the wanted status. The bit descriptions are as follows:

Note: W means write only.
Bit $0=1 \quad$ Low group tone output is enabled.
Bit $1=1 \quad$ High group tone output is enabled.
Bit $2=1 \quad$ DTMF output is enabled. When Bit 2 is reset to 0 , the DTMF output pin will be $\mathrm{Hi}-\mathrm{Z}$ state. Bit 3 is reserved.

6.21 MFP Output Pin (MFP)

The MFP output pin can output the Timer 1 clock or the modulation frequency; the output of the pin is determined by bit 0 of BUZCR (BUZCR.0). The organization of MR1 is shown in Figure 6-7. When bit 0 of BUZCR is reset to " 0, " the MFP output can deliver a modulation output in any combination of one signal from among DC, $4096 \mathrm{~Hz}, 2048 \mathrm{~Hz}$, and one or more signals from among $128 \mathrm{~Hz}, 64 \mathrm{~Hz}, 8 \mathrm{~Hz}, 4 \mathrm{~Hz}$, 2 Hz , or 1 Hz (when using a 32.768 KHz crystal). The MOV MFP, \#I instruction is used to specify the modulation output combination. The data specified by the 8 -bit operand and the MFP output pin are shown in next page.

R7 R6	R5	R4	R3	R2	R1	R0	FUNCTION
$0 \quad 0$	0	0	0	0	0	0	Low level
	0	0	0	0	0	1	128 Hz
	0	0	0	0	1	0	64 Hz
	0	0	0	1	0	0	8 Hz
	0	0	1	0	0	0	4 Hz
	0	1	0	0	0	0	2 Hz
	1	0	0	0	0	0	1 Hz
$0 \quad 1$	0	0	0	0	0	0	High level
	0	0	0	0	0	1	128 Hz
	0	0	0	0	1	0	64 Hz
	0	0	0	1	0	0	8 Hz
	0	0	1	0	0	0	4 Hz
	0	1	0	0	0	0	2 Hz
	1	0	0	0	0	0	1 Hz
10	0	0	0	0	0	0	2048 Hz
	0	0	0	0	0	1	2048 Hz * 128 Hz
	0	0	0	0	1	0	2048 Hz * 64 Hz
	0	0	0	1	0	0	2048 Hz * 8 Hz
	0	0	1	0	0	0	$2048 \mathrm{~Hz} * 4 \mathrm{~Hz}$
	0	1	0	0	0	0	2048 Hz * 2 Hz
	1	0	0	0	0	0	2048 Hz * 1 Hz
11	0	0	0	0	0	0	4096 Hz
	0	0	0	0	0	1	4096 Hz * 128 Hz
	0	0	0	0	1	0	$4096 \mathrm{~Hz} * 64 \mathrm{~Hz}$
	0	0	0	1	0	0	4096 Hz * 8 Hz
	0	0	1	0	0	0	4096 Hz * 4 Hz
	0	1	0	0	0	0	4096 Hz * 2 Hz
	1	0	0	0	0	0	4096 Hz * 1 Hz

Table 5 The relation between the MFP output frequncy and the data specified by 8-bit

operand

6.22 LCD Controller/Driver

The W742S81A can directly drive an LCD with 40 segment output pins and 4 common output pins for a total of 40×4 dots. The LCD driving mode is $1 / 3$ bias $1 / 4$ duty. The alternating frequency of the LCD can be set as $\mathrm{Fw} / 64$, $\mathrm{Fw} / 128$, $\mathrm{Fw} / 256$, or $\mathrm{Fw} / 512$. The structure of the LCD alternating frequency (FLCD) is shown in the Figure 6-14.

Figure 6-14 LCD alternating frequency (FLCD) circuit diagram
$\mathrm{Fw}=32.768 \mathrm{KHz}$, the LCD frequency is as shown in the table below.

LCD frequency	Fw/64 (512Hz)	Fw/128 (256Hz)	Fw/256 (128Hz)	Fw/512 (64Hz)
$\mathbf{1 / 4 ~ d u t y ~}$	128 Hz	64 Hz	32 Hz	16 Hz

Table 6 The relationship between the FLCD and the duty cycle

Corresponding to the 40 LCD drive output pins, there are 40 LCD data RAM segments. Instructions such as MOV LPL,R, MOV LPH,R, MOV @LP,R, and MOV R, @LP are used to control the LCD data RAM. The data in the LCD data RAM are transferred to the segment output pins automatically without program control. When the bit value of the LCD data RAM is "1," the LCD is turned on. When the bit value of the LCD data RAM is " 0, " LCD is turned off. The contents of the LCD data RAM (LCDR) are sent out through the segment 0 to segment 39 pins by a direct memory access. The relation between the LCD data RAM and segment/common pins is shown below.

		COM3	COM2	COM1	COM0
LCD DATA RAM	OUTPUT PIN	BIT 3	BIT 2	BIT 1	BIT 0
LCDR00	SEG0	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
LCDR01	SEG1	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
$:$	$:$	$:$	$:$	$:$	$:$
LCDR26	SEG38	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
LCDR27	SEG39	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$

Table 7 The relation between the LCDR and segment/common pins used as LCD drive output pins

The LCDON instruction turns the LCD display on (even in HOLD mode), and the LCDOFF instruction turns the LCD display off. At initial reset, all the LCD segments are unlit. When the initial reset state ends, the LCD display is turned off automatically. To turn on the LCD display, the instruction LCDON must be executed.

6.22.1 LCD RAM addressing method

There are 40 LCD RAMs (LCDR00 - LCDR27) that should be indirectly addressed. The LCD RAM pointer (LP) is used to point to the address of the wanted LCD RAM. The LP is organized as 6-bit binary register. The MOV LPL,R and MOV LPH,R instructions can load the LCD RAM address to the LP from R. The MOV @LP,R and MOV R,@LP instructions can access the pointed LCD RAM content.

6.22.2 The output waveforms for the LCD driving mode

1/3 bias 1/4 duty Lighting System (Example)
Normal Operating Mode

\square

Continued

LCD driver
outputs for seg. on COMO, COM1 sides being lit
LCD driver outputs for seg. on CoM1, COM2,3 sides being lit LCD driver outputs for seg. on COM1 COM2 sides being lit
LCD driver outputs for seg. on COM0 COM2,3 sides being lit
LCD driver outputs for seg. on COMO COM1, 2,3 sides being lit

The power connections for the $1 / 3$ bias $1 / 4$ duty LCD driving mode are shown below.

7. ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Supply Voltage to Ground Potential	-0.3 to +7.0	V
Applied Input/Output Voltage	-0.3 to +7.0	V
Power Dissipation	120	mW
Ambient Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

8. DC CHARACTERISTICS

(VDD-VSS $=3.0 \mathrm{~V}, \mathrm{Fm}=3.58 \mathrm{MHz}, \mathrm{Fs}=32.768 \mathrm{KHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{LCD}$ on; unless otherwise specified)

PARAMETER	SYM	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Voltage (W742S81A)	VDD	-	2.4	-	5.5	V
Op. Current (Crystal type)	IOP1	No load (Ext-V) In dual-clock normal operation	-	0.9	2.5	mA
Op. Current (Crystal type)	IOP3	No load (Ext-V) In dual-clock slow operation and Fm is stopped	-	20	30	$\mu \mathrm{A}$
Hold Current (Crystal type)	IHM1	Hold mode No load (Ext-V) In dual-clock normal operation	-	-	450	$\mu \mathrm{A}$
Hold Current (Crystal type)	IHM3	Hold mode No load (Ext-V) In dual-clock slow operation and Fm is stopped	-	15	30	$\mu \mathrm{A}$
Stop Current (Crystal type)	ISM1	Stop mode No load (Ext-V) In dual-clock normal operation	-	1	2	$\mu \mathrm{A}$
Input Low Voltage	VIL	-	Vss	-	0.3 VDD	V
Input High Voltage	VIH	-	0.7 VDD	-	VDD	V
MFP Output Low Voltage	VmL	$\mathrm{IOL}=3.5 \mathrm{~mA}$	-	-	0.4	V
MFP Output High Voltage	VmH	$\mathrm{IOH}=3.5 \mathrm{~mA}$	2.4	-	-	V
Port RA, RB, RD and RF Output Low Voltage	VABL	$\mathrm{IOL}=2.0 \mathrm{~mA}$	-	-	0.4	V
Port RA, RB, RD and RF Output high Voltage	VABH	$\mathrm{IOH}=2.0 \mathrm{~mA}$	2.4	-	-	V
LCD Supply Current	ILCD	All Seg. ON	-	-	6	$\mu \mathrm{A}$
SEG0-SEG39 Sink Current (Used as LCD output)	IoL1	$\begin{gathered} \text { VOL }=0.4 \mathrm{~V} \\ \text { VLCD }=0.0 \mathrm{~V} \\ \hline \end{gathered}$	90	-	-	$\mu \mathrm{A}$
SEG0-SEG39 Drive Current	IOH1	$\mathrm{VOH}=2.4 \mathrm{~V}$	90	-	-	$\mu \mathrm{A}$

Used as LCD output)		VLCD $=3.0 \mathrm{~V}$				
Port RE Sink Current	IEL	VOL $=0.9 \mathrm{~V}$	9	-	-	mA
Port RE Source Current	IEH	VoH $=2.4 \mathrm{~V}$	0.4	1.2	-	mA
DTMF Output DC level	VTDC	RL=5K Ω, VDD=2.5 to 3.8V	1.1	-	2.8	V
DTMF Distortion	THD	RL=5K Ω, VDD=2.5 to 3.8V	-	-30	-23	dB
DTMF Output Voltage	VTO	Low group, RL=5K	130	150	170	mVrms
Pre-emphasis		Col/Row	1	2	3	dB
DTMF Output Sink Current	ITL	VTO=0.5V	0.2	-	-	mA
Pull-up Resistor	RC	Port RC	100	350	1000	$\mathrm{~K} \Omega$
RES Pull-up Resistor	RRES	-	20	100	500	$\mathrm{~K} \Omega$

9. AC CHARACTERISTICS

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Frequency	FOSC	Crystal type	-	3.58	-	MHz
Instruction cycle time	TI	One machine cycle	-	$4 / \mathrm{FOSC}$	-	S
Reset Active Width	TRAW	FOSC $=32.768 \mathrm{KHz}$	1	-	-	$\mu \mathrm{S}$
Interrupt Active Width	TIAW	FOSC $=32.768 \mathrm{KHz}$	1	-	-	$\mu \mathrm{S}$

10. INSTRUCTION SET TABLE

Symbol Description

ACC:	Accumulator
ACC.n:	Accumulator bit n
WR:	Working Register
WRP:	WR Page Register
PAGE:	Page Register
DBKR:	Data Bank Register
ROMPR:	ROM Page Register
MR0:	Mode Register 0
MR1:	Mode Register 1
PM0:	Port Mode 0
PM1:	Port Mode 1
PM2:	Port Mode 2
PM5:	Port Status Register 0
PSR0:	Memory (RAM) of address R
R:	WatchDog Timer Register
WDTR:	LCD data RAM pointer
LPL:	LCD data RAM pointer
LPH:	Memory bit n of address R
R.n:	System Control Register
SCR:	Buzzer Control Register
BUZCR:	I/O Port RA Port RC
RA:	DTMF Register
RC:	MTMF Control Pin Output Pin
DTMF:	
DTCR:	MFP:

Winbond Eectronies	
Continued	
I:	Constant parameter
L:	Branch or Jump address
CF:	Carry Flag
ZF:	Zero Flag
PC:	Program Counter
TM0L:	Low nibble of the Timer 0 counter
TM0H:	High nibble of the Timer 0 counter
TM1L:	Low nibble of the Timer 1 counter
TM1H:	High nibble of the Timer 1 counter
TAB0:	Look-up table address buffer 0
TAB1:	Look-up table address buffer 1
TAB2:	Look-up table address buffer 2
TAB3:	Look-up table address buffer 3
IEF.n:	Interrupt Enable Flag n
HCF.n:	HOLD mode release Condition Flag n
HEF.n:	HOLD mode release Enable Flag n
SEF.n:	STOP mode wake-up Enable Flag n
PEF.n:	Port Enable Flag n
EVF.n:	Event Flag n
$!=$:	Not equal
\&:	AND
\wedge :	OR
EX:	Exclusive OR
$\leftarrow:$	Transfer direction, result
[PAGE* $10 \mathrm{H}+()$]:	Contents of address PAGE(bit2, bit1, bit0)*10H+()
[P()]:	Contents of port P

Machine code	Mnemo		Function	Flag affected	W/C
Arithmetic					
00011000 Oxxx xxxx	ADD	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF, CF	1/1
00011100 i i i i nnnn	ADD	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn})+\mathrm{I}$	ZF, CF	1/1
00011001 0xxx xxxx	ADDR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF, CF	1/1
00011101 i i i i nnnn	ADDR	WRn, \#I	ACC, WRn $\leftarrow(W R n)+$ I	ZF, CF	1/1
00001000 Oxxx xxxx	ADC	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})+(\mathrm{ACC})+(\mathrm{CF})$	ZF, CF	1/1
00001100 i i i i nnnn	ADC	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn})+\mathrm{I}+(\mathrm{CF})$	ZF, CF	1/1
00001001 Oxxx xxxx	ADCR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{ACC})+(\mathrm{CF})$	ZF, CF	1/1
00001101 i i i i nnnn	ADCR	WRn, \#I	ACC, $\mathrm{WRn} \leftarrow(\mathrm{WRn})+\mathrm{I}+(\mathrm{CF})$	ZF, CF	1/1
00101000 0xxx xxxx	ADU	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF	1/1
00101100 i i i i nnnn	ADU	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn})+\mathrm{I}$	ZF	1/1
00101001 0xxx xxxx	ADUR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF	1/1
00101101 i i i i nnnn	ADUR	WRn, \#I	ACC, WRn $\leftarrow(\mathrm{WRn})+\mathrm{I}$	ZF	1/1
00011010 Oxxx xxxx	SUB	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})-(\mathrm{ACC})$	ZF, CF	1/1
00011110 i i i i nnnn	SUB	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn})-\mathrm{I}$	ZF, CF	1/1
00011011 0xxx $x x x x$	SUBR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{ACC})$	ZF, CF	1/1
00011111 i i i i nnnn	SUBR	WRn, \#I	ACC, WR $\leftarrow(W R)-\mathrm{I}$	ZF, CF	1/1
00001010 Oxxx xxxx	SBC	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})-(\mathrm{ACC})-(\mathrm{CF})$	ZF, CF	1/1
00001110 i i i i nnnn	SBC	WRn, \#I	ACC $\leftarrow(\mathrm{WRn})-\mathrm{I}-(\mathrm{CF})$	ZF, CF	1/1
00001011 Oxxxxxxxx	SBCR	R, ACC	ACC, $\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{ACC})-(\mathrm{CF})$	ZF, CF	1/1
00001111 i i i i nnnn	SBCR	WRn, \#I	ACC, WRn $\leftarrow(W R n)-\mathrm{I}-(\mathrm{CF})$	ZF, CF	1/1
01001010 Oxxx x xxx	INC	R	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})+1$	ZF, CF	1/1
01001010 1xxx xxxx	DEC	R	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})-1$	ZF, CF	1/1

Publication Release Date: March 2003

- 41 -

Revision A1

W742S81A

Instruction set, continued

Machine code	Mnemoni		Function	Flag affected	W/C
Logic					
00101010 Oxxx xxxx	ANL	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R}) \&(\mathrm{ACC})$	ZF	1/1
00101110 i i i i nnnn	ANL	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn}) \& \mathrm{I}$	ZF	1/1
00101011 Oxxx xxxx	ANLR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R}) \&(\mathrm{ACC})$	ZF	1/1
00101111 iiii nnnn	ANLR	WRn, \#I	ACC, WRn $\leftarrow(\mathrm{WRn}) \& \mathrm{I}$	ZF	1/1
00111010 Oxxx xxxx	ORL	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R}) \wedge(\mathrm{ACC})$	ZF	1/1
00111110 i ii i nnnn	ORL	WRn, \#I	$\mathrm{ACC} \leftarrow(\mathrm{WRn}) \wedge \mathrm{I}$	ZF	1/1
00111011 Oxxx xxxx	ORLR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R}) \wedge(\mathrm{ACC})$	ZF	1/1
00111111 i i i i nnnn	ORLR	WRn, \#I	ACC, WRn $\leftarrow(\mathrm{WRn}) \wedge \mathrm{I}$	ZF	1/1
00111000 Oxxx xxxx	XRL	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R}) \mathrm{EX}(\mathrm{ACC})$	ZF	1/1
00111100 iiii nnnn	XRL	WRn, \#I	ACC $\leftarrow(W R n)$ EX I	ZF	1/1
00111001 Oxxx xxxx	XRLR	R, ACC	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R}) \mathrm{EX}(\mathrm{ACC})$	ZF	1/1
00111101 i ii i nnnn	XRLR	WRn, \#I	ACC, WRn $\leftarrow(\mathrm{WRn}) \mathrm{EX} \mathrm{I}$	ZF	1/1
Branch					
0111 Oaaa aaaa aaaa	JMP	L	$\mathrm{PC} 12 \sim \mathrm{PC} 0 \leftarrow(\mathrm{ROMPR}) \times 800 \mathrm{H}+\mathrm{L} 10 \sim \mathrm{~L} 0$		1/1
1000 Oaaa aaaa aaaa	JB0	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if $\mathrm{ACC} .0=21 "$		1/1
1001 Oaaa aaaa aaaa	JB1	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if ACC. $1=21 "$		1/1
1010 Oaaa aaaa aaaa	JB2	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if $\mathrm{ACC} .2=~ " 1 "$		1/1
1011 Oaaa aaaa aaaa	JB3	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if ACC. $3=11$		1/1
1110 Oaaa aaaa aaaa	JZ	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if $\mathrm{ACC}=0$		1/1
1100 Oaaa aaaa aaaa	JNZ	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0 ;$ if $\mathrm{ACC}!=0$		1/1
1111 Oaaa aaaa aaaa	JC	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0$; if $\mathrm{CF}=$ " 1 "		1/1
1101 Oaaa aaaa aaaa	JNC	L	$\mathrm{PC} 10 \sim \mathrm{PC} 0 \leftarrow \mathrm{~L} 10 \sim \mathrm{~L} 0$; if CF != "1"		1/1
01001000 Oxxx xxxx	DSKZ	R	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})-1 ; \mathrm{PC} \leftarrow(\mathrm{PC})+2$ if $\mathrm{ACC}=0$	ZF, CF	1/1
01001000 1xxx xxxx	DSKNZ	R	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})-1 ; \mathrm{PC} \leftarrow(\mathrm{PC})+2$ if $\mathrm{ACC}!=0$	ZF, CF	1/1
10101000 Oxxx xxxx	SKB0	R	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ if R. $0=" 1 "$		1/1
10101000 1xxx xxxx	SKB1	R	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ if R.1 $=$ " 1 "		1/1
10101001 Oxxx xxxx	SKB2	R	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ if R. $2=" 1 "$		1/1
10101001 1xxx xxxx	SKB3	R	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ if $\mathrm{R} .3=" 1 "$		1/1

Instruction set, continued

Machine code	Mnemonic		Function	Flag affected	W/C
Data move					
$00010000 \quad 0000$ iiii	MOV	ACC, \#I	$\mathrm{ACC} \leftarrow \mathrm{I}$	ZF	1/1
1110 1nnn nxxx $x x x x$	MOV	WRn, R	$\mathrm{WRn} \leftarrow(\mathrm{R})$		1/1
10011001 iuii nnnn	MOV	WRn, \#I	$\mathrm{WRn} \leftarrow \mathrm{I}$		1/1
1111 1nnn nxxx $x^{\text {axx }}$	MOV	R, WRn	$\mathrm{R} \leftarrow(\mathrm{WRn})$		1/1
0110 1nnn nxxx xxxx	MOVA	WRn, R	ACC, WRn $\leftarrow(\mathrm{R})$	ZF	1/1
0111 1nnn nxxxxxxx	MOVA	R, WRn	ACC, $\mathrm{R} \leftarrow(\mathrm{WRn})$	ZF	1/1
01011001 1xxx xxxx	MOV	R, ACC	$\mathrm{R} \leftarrow(\mathrm{ACC})$		1/1
01001110 1xxx xxxx	MOV	ACC, R	$\mathrm{ACC} \leftarrow(\mathrm{R})$	ZF	1/1
1011 li ii i $x x x x x x x$	MOV	R, \#I	$\mathrm{R} \leftarrow \mathrm{I}$		1/1
1100 1nnn n000 qqqa	MOV	WRn, @WRq	WRn $\leftarrow[(\mathrm{DBKR}) \times 80 \mathrm{H}+(\mathrm{PAGE}) \mathrm{x} 10 \mathrm{H}+(\mathrm{WRq})]$		1/2
1101 1nnn n000 qqqq	MOV	@WRq, WRn	$[(\mathrm{DBKR}) \times 80 \mathrm{H}+(\mathrm{PAGE}) \times 10 \mathrm{H}+(\mathrm{WRq})] \leftarrow \mathrm{WRn}$		1/2
10001100 Oxxx xxxx	MOV	TAB0, R	$\mathrm{TAB} 0 \leftarrow(\mathrm{R})$		1/1
10001100 1xxx xxxx	MOV	TAB1, R	$\mathrm{TAB} 1 \leftarrow(\mathrm{R})$		1/1
10001110 Oxxx xxxx	MOV	TAB2, R	$\mathrm{TAB} 2 \leftarrow(\mathrm{R})$		1/1
10001110 1xxx xxxx	MOV	TAB3, R	TAB3 $\leftarrow(\mathrm{R})$		1/1
10001101 Oxxx xxxx	MOVC	R	$\begin{aligned} & \mathrm{R} \leftarrow[(\mathrm{TAB} 3) \times 1000 \mathrm{H}+(\mathrm{TAB} 2) \times 100 \mathrm{H}+(\mathrm{TAB} 1) \times 10 \mathrm{H}+ \\ & (\mathrm{TAB} 0)] \end{aligned}$		1/2
Input \& Output					
01011011 Oxxx xxxx	MOVA	R, RA	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RA}]$	ZF	1/1
010110111 1xxx xxxx	MOVA	R, RB	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RB}]$	ZF	1/1
01001011 Oxxx $x x x x$	MOVA	R, RC	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RC}]$	ZF	1/1
01001011 1xxx xxxx	MOVA	R, RD	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RD}]$	ZF	1/1
01011010 Oxxx xxxx	MOV	RA, R	$[\mathrm{RA}] \leftarrow(\mathrm{R})$		1/1
01011010 1xxx xxxx	MOV	RB, R	$[\mathrm{RB}] \leftarrow(\mathrm{R})$		1/1
01001010 Oxxx xxxx	MOV	RC, R	$[\mathrm{RC}] \leftarrow(\mathrm{R})$		1/1
10101100 1xxx xxxx	MOV	RD, R	$[\mathrm{RD}] \leftarrow(\mathrm{R})$		1/1
01011110 Oxxx xxxx	MOV	RE, R	$[\mathrm{RE}] \leftarrow \sim(\mathrm{R})$		1/1
10101110 Oxxx xxxx	MOV	RF, R	$[\mathrm{RF}] \leftarrow(\mathrm{R})$		1/1

Instruction set, continued

Machine code	Mnemonic		Function	Flag affected	W/C
Flag \& Register					
01011111 1xxx xxxx	MOVA	R, PAGE	ACC, $\mathrm{R} \leftarrow$ PAGE (Page Register)	ZF	1/1
01011110 1xxx xxxx	MOV	PAGE, R	PAGE $\leftarrow(\mathrm{R})$		1/1
010101101000 Oi i i	MOV	PAGE, \#I	PAGE $\leftarrow \mathrm{I}$		1/1
10011101 1xxx $x x x x$	MOV	R, WRP	$\mathrm{R} \leftarrow \mathrm{WRP}$		1/1
10011100 1xxx xxxx	MOV	WRP, R	WRP $\leftarrow(\mathrm{R})$		1/1
001101011000 iiii	MOV	WRP, \#I	$\mathrm{WRP} \leftarrow \mathrm{I}$		1/1
100111110000 nnnn	MOV	WRn,TM1	WRn $\leftarrow \mathrm{TM} 1.4-\mathrm{TM} 1.7, \mathrm{ACC} \leftarrow \mathrm{TM} 1.0-\mathrm{TM} 1.3$		1/1
100111000000 nnnn	MOV	DBKR, WRn	DBKR $\leftarrow \mathrm{WRn}$		1/1
001101010000 ii ii	MOV	DBKR, \#I	DBKR $\leftarrow \mathrm{I}$		1/1
$00110100 \quad 0000$ Oii i	MOV	ROMPR, \#I	ROMPR $\leftarrow \mathrm{I}$		1/1
10001000 Oxxx xxxx	MOV	ROMPR, R	ROMPR $\leftarrow(\mathrm{R})$		1/1
10001001 Oxxx xxxx	MOV	R, ROMPR	$\mathrm{R} \leftarrow(\mathrm{ROMPR})$		1/1
01011001 Oxxx xxxx	MOVA	R, CF	ACC. $0, \mathrm{R} .0 \leftarrow \mathrm{CF}$	ZF	1/1
01011000 Oxxx xxxx	MOV	CF, R	$\mathrm{CF} \leftarrow(\mathrm{R} .0)$	CF	1/1
01001001 Oxxx xxxx	MOVA	R, HCFL	ACC, R \leftarrow HCF. $0 \sim$ HCF. 3	ZF	1/1
01001001 1xxx xxxx	MOVA	R, HCFH	ACC, R \leftarrow HCF. $4 \sim$ HCF. 7	ZF	1/1
010100110000 iiii	MOV	PM0, \#I	Port Mode $0 \leftarrow \mathrm{I}$		1/1
010101110000 iiii	MOV	PM1, \#I	Port Mode $1 \leftarrow \mathrm{I}$		1/1
010101111000 iiii	MOV	PM2, \#I	Port Mode $2 \leftarrow \mathrm{I}$		1/1
001101111000 iiii	MOV	PM5, \#I	Port Mode $5 \leftarrow \mathrm{I}$		1/1
01000000 i00i 0i ii	CLR	EVF, \#I	Clear Event Flag if In = 1		1/1
$010111010 x x x x x x x x$	MOVA	R, EVFL	ACC, R \leftarrow EVF. $0-$ EVF. 3	ZF	1/1
$010111011 \times x x x x x x$	MOVA	R, EVFH	ACC, R \leftarrow EVF. 4 - EVF. 7	ZF	1/1
01000001 i00i Oi i i	MOV	HEF, \#I	Set/Reset HOLD mode release Enable Flag		1/1
01010001 i00i 0i i i	MOV	IEF, \#I	Set/Reset Interrupt Enable Flag		1/1
010000110000 iiii	MOV	PEF, \#I	Set/Reset Port Enable Flag		1/1
010100100000 iiii	MOV	SEF, \#I	Set/Reset STOP mode wake-up Enable Flag for RC port		1/1

Instruction set, continued

Machine code	Mnemonic		Function	Flag affected	W/C
Flag \& Register					
010101000000 i0ii	MOV	SCR, \#I	SCRヶI		1/1
01001111 Oxxx xxxx	MOVA	R, PSR0	ACC, $\mathrm{R} \leftarrow$ Port Status Register 0	ZF	1/1
0100001000000000	CLR	PSR0	Clear Port Status Register 0		1/1
$01010000 \quad 01000000$	SET	CF	Set Carry Flag	CF	1/1
0101000000000000	CLR	CF	Clear Carry Flag	CF	1/1
0001011100000000	CLR	DIVR0	Clear the last 4-bit of the Divider 0		1/1
0101010110000000	CLR	DIVR1	Clear the last 4-bit of the Divider 1		1/1
010101100000 iiii	MOV	WDTR, \#I	WDTRヶ\leftarrow I		1/1
01011111 Oxxx $x x x x$	MOVA	R,WDTR	ACC, $\mathrm{R} \leftarrow$ Watchdog Timer Register	ZF	1/1
0001011110000000	CLR	WDT	Clear Watchdog Timer		1/1
DTMF					
$100111101 \times x x$ xxxx	MOV	DTMF,R	DTMF $\leftarrow(\mathrm{R})$		1/1
001101001000 0iii	MOV	DTCR,I	DTCR $\leftarrow \mathrm{I}$		1/1
Shift \& Rotate					
01001101 Oxxx xxxx	SHRC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\text { R.n } n+1) ; \\ & \text { ACC. } 3, \text { R. } 3 \leftarrow 0 ; \mathrm{CF} \leftarrow \mathrm{R} .0 \end{aligned}$	ZF, CF	1/1
01001101 1xxx $x x x x$	RRC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\mathrm{R} . \mathrm{n}+1) ; \\ & \text { ACC.3, R. } 3 \leftarrow \mathrm{CF} ; \mathrm{CF} \leftarrow \mathrm{R} .0 \end{aligned}$	ZF, CF	1/1
01001100 Oxxx xxxx	SHLC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\text { R.n-1 }) \\ & \text { ACC. } 0, \text { R. } 0 \leftarrow 0 ; \mathrm{CF} \leftarrow \text { R. } 3 \end{aligned}$	ZF, CF	1/1
01001100 1xxx xxxx	RLC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\mathrm{R} . \mathrm{n}-1) ; \\ & \text { ACC. } 0, \mathrm{R} .0 \leftarrow \mathrm{CF} ; \mathrm{CF} \leftarrow \mathrm{R} .3 \end{aligned}$	ZF, CF	1/1

Publication Release Date: March 2003

- 45 -

Revision A1

Instruction set, continued

Machine code	Mnemonic		Function	Flag affected	W/C
LCD					
10011000 Oxxx xxxx	MOV	LPL, R	LPL $\leftarrow(\mathrm{R})$		1/1
10011000 1xxx xxxx	MOV	LPH, R	$\mathrm{LPH} \leftarrow(\mathrm{R})$		1/1
10011010 Oxxx xxxx	MOV	@LP, R	$[(\mathrm{LPH}) \times 10 \mathrm{H}+(\mathrm{LPL})] \leftarrow(\mathrm{R})$		1/1
10011011 Oxxx xxxx	MOV	R, @LP	$\mathrm{R} \leftarrow[(\mathrm{LPH}) \times 10 \mathrm{H}+(\mathrm{LPL})]$		1/1
0000001000000000	LCDON		LCD ON		1/1
0000001010000000	LCDOFF		LCD OFF		1/1
MFP					
$001101100000000 i$	MOV	BUZCR, \#I	BUZCR \leftarrow I		1/1
10001010 0xxx xxxx	MOV	BUZCR, R	BUZCR $\leftarrow(\mathrm{R})$		1/1
10001011 Oxxx xxxx	MOV	R,BUZCR	$\mathrm{R} \leftarrow$ (BUZCR)		1/1
00010010 i i i i i i ii	MOV	MFP, \#I	$[\mathrm{MFP}] \leftarrow \mathrm{I}$		1/1
Timer					
10101010 0xxx xxxx	MOV	TM0L, R	TM0L $\leftarrow(\mathrm{R})$		1/1
10101010 1xxx xxxx	MOV	TM0H, R	TM0H $\leftarrow(\mathrm{R})$		1/1
10101011 Oxxx xxxx	MOV	TM1L, R	TM1L $\leftarrow(\mathrm{R})$		1/1
10101011 1xxx xxxx	MOV	TM1H, R	TM1H $\leftarrow(\mathrm{R})$		1/1
000100111000 i00i	MOV	MR0,\#I	MR0 $\leftarrow(\mathrm{R})$		1/1
000100110000 iiii	MOV	MR1,\#I	MR1 $\leftarrow(\mathrm{R})$		1/1
Other					
0000000010000000	HOLD		Enter Hold mode		1/1
0000000011000000	STOP		Enter Stop mode		1/1
0000000000000000	NOP		No operation		1/1
0101000011000000	EN	INT	Enable interrupt function		1/1
0101000010000000	DIS	INT	Disable interrupt function		1/1
Subroutine					
0110 Oaaa aaza aaaa	CALL	L	```Push Stack: STACK <- PC+1,TAB0,TAB1,TAB2,TAB3, DBKR,WRP,ROMPR,PAGE,ACC,CF; PC12~PC0<- (ROMPR)x800H+L10~L0```		1/1
00000001 iiii iiii	RTN	\#I	(PC) <- STACK;Pop other register by I Table setting(Refer to Table 8)		1/1

W742S81A

Bit definition of I	
$\mathrm{I}=00000000$	Pop PC from stack only
bit0 $=1$	Pop PC and TAB0, TAB1, TAB2, TAB3 from stack
bit $1=1$	Pop PC and DBKR from stack
bit $2=1$	Pop $\mathbf{P C}$ and WRP from stack
bit3=1	Pop PC and ROMPR from stack
bit $4=1$	Pop PC and PAGE from stack
bit5=1	Pop PC and ACC from stack
bit $6=1$	Pop PC and CF from stack

Table 8 The bit definition of RTN

