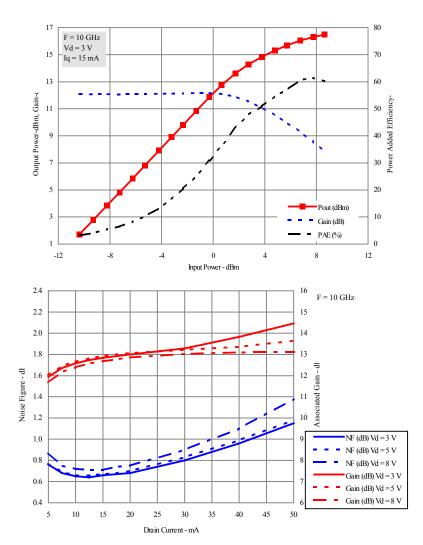


300um Discrete pHEMT TGF4350-EPU



Key Features and Performance

- 0.25um pHEMT Technology
- DC 22 GHz Frequency Range
- 1.2 dB NF, 14.5 dB Associated Gain at 10 GHz, 3V Operation
- Floating Source Configuration
- Chip Dimensions 0.5080 mm x
 0.4064 mm

Primary Applications

Low Noise amplifiers

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

11)

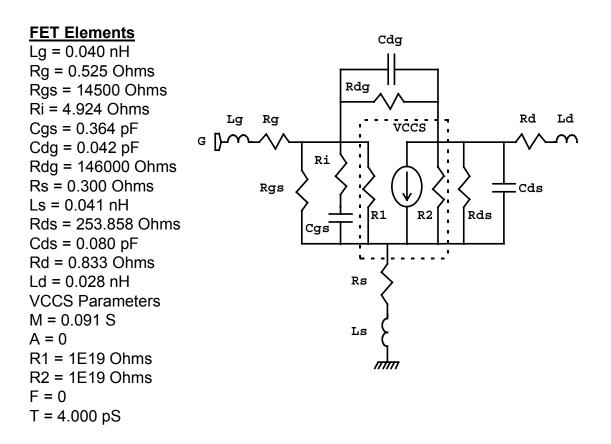
Advance Product Information

TGF4350-EPU

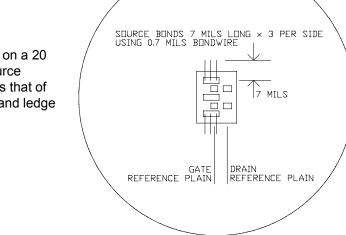
Electrical Characteristics

RECOMMENDED MAXIMUM RATINGS

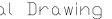
Symbol	Parameter	Value	Notes
V^+	Positive Supply Voltage	7 V	
I^+	Positive Supply Current	.085A	<u>3</u> /
PD	Power Dissipation	0.6 W	
P _{IN}	Input Continuous Wave Power	20 dBm	
T _{CH}	Operating Channel Temperature	150 °C	<u>1/, 2/</u>
T _M	Mounting Temperature (30 seconds)	320 °C	
T _{STG}	Storage Temperature	-65 °C to 150 °C	


- <u>1/</u> These ratings apply to individual FET
- 2/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- <u>3</u>/ Nominal value of Idss

Symbol	Parameter	Minimum	Maximum	Value
Idss	Saturated Drain Current (info	30	141	mA
	only)			
V _{P1-5}	Pinch-off Voltage	-1.5	-0.5	V
BV _{GS1}	Breakdown Voltage gate-source	-30	-8	V
BV _{GD1-5}	Breakdown Voltage gate-drain	-30	-8	V


DC PROBE TESTS ($T_A = 25 \text{ °C} \pm 5 \text{ °C}$)

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.


TGA4350EPU pHEMT Model (Vds = 3.0 V and 15mA at T = 25° C)

Device is mounted on a 20 mil high ledge. Source inductance includes that of source bondwires and ledge

Units: millimeters (inches) Thickness: 0.1016 (0.004) Chip edge to bond pad dimensions are shown to center of bond pad chip size tolerance: +/- 0.051 (0.002)

Bond	Pad	#1,#2	(Source)	0.051	Х	0.136	(0.002	\times	0.005)
Bond	Pad	#3,#4	(Drain)	0.042	×	0.069	(0.002	\times	0.003)
Bond	Pad	#5,#6	(Gate)	0.051	\times	0.067	(0.005	×	0.003>

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Advance Product Information

TGF4350-EPU

Process and Assembly Notes

This device should be attached using conductive epoxy only. Contact factory for additional details as required.

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200°C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.