Virtual
Memory
Processing Unit

Features

® Regular, easy-to-use architecture.

m Instruction set more powerful than many
minicomputers.

m Direct addressing capability of up to 8M
bytes in each address space.

m Supports implementation of virtual
memory systems.

m Eight user-selected addressing modes.

m Wide range of data types including bits,
bytes, words, 32-bit long words, and byte
and word strings.

® Binary-compatible with Z8001/2 CPUs.

® Separate System and Normal operating
modes.

® Sophisticated interrupt structure.

m Resource-sharing capabilities for
multiprocessing systems.

s Multi-programming support.

m 32-bit operations, including signed
multiply and divide.

Z-BUS compatible.
m Multiple clock rates: 4, 8, or 10 MHz.

General Description

The Virtual Memory Microprocessor Units
(Z8003 and Z8004 VMPUs) accommodate
applications that range from the simplest to
the most complex.

The Z8003 VMPU uses both segmented and
nonsegmented address spaces. It also
provides facilities for the implementation of
demand segment swapping or a demand
paged virtual memory system.

The Z8004 VMPU uses only nonsegmented
address spaces. It also provides facilities for
the implementation of a demand paged
virtual memory system.

Both VMPUs interface with the entire
78000 Family of support components. Used
alone or with Z8000 Family components, the
advanced architecture of these LSI VMPUs
permits the'implementation of systems that
have the flexibility and the sophisticated
features usually associated with
minicomputers or mainframe computers.

The Z8003/4 microprocessors are binary
compatible with other Z8000 Family
microprocessors. The features that
distinguish these microprocessors from the
Z8001 and Z8002 microprocessors are the
abort capability and the Test and Set status.

An abort request function aids in the
implementation of virtual memory systems.
The abort function is initiated by memory
management circuitry external to the VMPU
when an address issued by the VMPU

references information (data or instructions)
that is not in main memory. After the abort
interrupt function, a service routine must
bring the page or segment containing the
addressed data into main memory. The
mainstream program is then restarted at the
point of interruption. An abort interrupt
differs from a standard interrupt in that the
executing instruction is stopped immediately
upon detection of the interrupt; this prevents
the loss of information needed for a
successful restart.

The Test and Set instruction (TSET), in
addition to its semaphore test and set
function, causes status code 1111 to be
placed onto output lines STp-ST3 during the
data read bus transaction. It can be used by
external circuitry to lock memory to prevent
it from being accessed by any other device
during the execution of the current TSET
instruction.

The architectural features of the VMPU
combine to produce a powerful and versatile
microprocessor. These features result in the
following benefits:

s High-density code
m Efficient compilation of programs

m Support for typical operating system
operations

m Complex data structures
m Large-scale virtual memory systems

43

General Description (Continued)

The VMPU is designed so that a powerful byte and word strings), eight addressing
memory management system can be used to modes, and a powerful instruction set.
improve the utilization fo the main memory A general mechanism has been provided
either as a standard memory or as a virtual for extending the basic instruction set
memory configuration. SGS produces through the use of external devices called
Memory Management Units (MMUs) Extended Processing Units (EPUs). In
designed for use with the Z8003 VMPU to general, an EPU is dedicated to perfoming
implement both virtual and nonvirtual complex and time-consuming tasks (such as
memory systems. floating-point arithmetic) so as to unburden

The architectural resources of the VMPUs the VMPU. Figure 1 shows a simplified block
include sixteen 16-bit registers, seven data diagram of the VMPU.

types (ranging from bits to 32-bit words, and

l_ ____________________ -

REFRESH |
CONTROL |

GENERAL ARITHMETIC
PURPOSE LOGIC
REGISTERS UNIT
REFRESH
COUNTER

I U

|
I
l
|
|
|
l
I
I
I
|
I
|
|

T insTRUCTION | L._i__l |
| _BUFFER | PROGRAM
—_—— STATUS I
REGISTERS t
INSTRUCTION
EXECUTION r———=q EXCEPTION |
CONTROL F— _pc 4 HANDLING
w CONTROL
1
28000 CPU]

Figure 1. Block Diagram

44

Architecture

General-Purpose Registers. The VMPU is a
register-oriented machine that contains
sixteen 16-bit general-purpose registers. All
general-purpose registers can be used as
accumulators and all but one can be used as
index registers or memory pointers.

Register flexibility is created by grouping
and overlapping multiple register (Figure 2).
For byte operations, the first eight 16-bit
registers can be treated as sixteen 8-bit
registers. The sixteen 16-bit registers can
also be grouped in pairs to form eight 32-bit
long-word registers. Similarly, the register
set can be grouped in guadruples to form
four 64-bit registers.

Stacks. VMPUs can use stacks located
anywhere in main memory. Call and Return
instructions, as well as interrupts and traps,
use an implied stack. Two stack pointers are
available, the System Stack Pointer and the
Normal Stack Pointer. The two stacks
separate operating system (System mode)

{ ro [7 RHO o7 RLO o]
RRO
w [1s RHY j ALY o]
RQO
Rz [RAH2 i AL2 |
RR2
{ L RH3 : ALY
e [RH4 j ALa 1
RR4
{ RS [RHS : ALS]
RO4
as | RAHE i AL]
RRE
A7 RH7 1 RL7
{ ns [15]
RR8
|]
Ras
l Rto []
RR10
A []
Rz |]
RR12
R13]
R14° SYSTEM STACK POINTER (SEG_NO) RQ12
R14 [(NSPSEG) NORMAL STACK POINTER (SEG. NO.)
AR LI | SYSTEM STACK POINTER (OFFSET)
R1s [(NSPOFF)_NORMAL STACK POINTER (OFFSET)]—]

Z8003

GENERAL
PURPOSE
REGISTERS

information from application program
(Normal mode) information. The user can
manipulate the Stack Pointer with any
instruction available for register operations
because the Stack Pointer is part of the
general-purpose register group.

In the Z8003 VMPU, register pair RR14 is
the implied Stack Pointer for segmented
operation. Register R14 contains the 7-bit
segment number and R15 contains the 16-bit
offset. Register R15 is used as the Stack
Pointer during nonsegmented operation.
Since the Z8004 runs only in the
nonsegmented mode, register R15 is used as
the Stack Pointer.

Special-Purpose Registers. The VMPUs also
provide 16-bit special-purpose registers.
These registers include Program Status
registers, Program Status Area Pointer
registers(s), and a Refresh Counter. The
configurations of the special-purpose

ro [

°

RRO

A

Rz [

RR2

A3 |
Ra [

Rs [

RR4

rs [

a7 [

o

»
2
&

RE
]

Rs [15

R
AR

|

RQ8

a0 [

|
l
{
{
l
!

RR10

R [

| iz |
| A |

RR12

Ll L JeJdid

RQ12

R1a [

AR14

R |
ms[

SYSTEM STACK POINTER (OFFSET)
NORMAL STACK POINTER (OFFSET)

-

78004

Figure 2. VMPU General-Purpose Registers

45

Architecture (Continued)
registers for the Z8003 and Z8004 VMPUs are

shown in Figure 3.

Program Status Registers. This group of
registers consists of the Program Counter
(PC) register and the Flag and Control Word
(FCW) register. The PC register contains the
address of the next instruction to be loaded
into the CPU. The low-order byte of the
FCW register contains the following flags:

C. Carry flag. is used to indicate that a
carry was made out of the high-order bit
position of a register used as an
accumulator.

Z, Zero flag, is generally used to indicate
that the result of an operation was zero.

S, Sign flag, is generally used to indicate
that the result of an operation was negative.

P/V. Parity/Overflow flag. is generally
used to indicate either even parity (after
logical operations on byte operands) or an
overflow condition (after arithmetic
operations).

D. Decimal-Adjust flag. is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

H. Half Carry flag. is used to convert the
binary result of a previous addition or
subtraction into the correct decimal (BCD)
result.

The high-order byte of the FCW register
contains control bits which are used to
control the VMPU operating modes and to
enable various types of interrupts. The
following control bits are contained in the

FCW:

NVIE, Nonvectored Interrupt Enable bit.
This but must be 1 to enable the VMPU to
accept non-vectored interrupts.

VIE, Vectored Interrupt Enable bit. This bit
must be 1 to enable the VMPU to accept
vectored interrupts.

S/N, System/Normal bit. This bit indicates
the current VMPU operating mode. When 0,

S/N specifies Normal mode; When 1, S/N
specifies System mode. The VMPU output
N/S represents the complement of this bit.

EPA, Extended Processor Architecture
mode bit. This bit, when 1, indicates that
the system contains an Extended Processing
Unit (EPU) and extended instructions are to
be executed by the appropriate EPU. When
0, this bit specifies that extended instructions
will be trapped for software emulation.

SEG. Segmentation mode bit (Z8003 only).
When 1, this bit specifies that the VMPU is
in segmented addressing mode; when 0 it
specifies that the VMPU is in the
nonsegmented addressing mode.

Program Status Area Pointer (PSAP)
Register. A Program Status Area (PSA)
array in main memory is used to store new
program status information (i.e., sets of FCW
and PC values). Each time an interrupt or
trap occurs the current program status is
saved and a new program status is loaded
into the status registers from the Program
Status Area. The address of the table that
contains new program status values is
contained in a Program Status Area Pointer
(PSAP) register (Figure 4). The low order
byte of the offset address is assumed to be all
zeros; therefore, the Program Status Area
must start on a 256-byte boundary.

Refresh Register. The VMPU contains a
programmable counter that automatically
refreshes dynamic memory. The Refresh
Counter register consists of a 9-bit row
counter, a 6-bit rate counter, and an Enable
bit (Figure 5). The 9-bit row counter can
address up to 256 rows and is incremented
by two each time the rate counter reaches
end-of-count. The rate counter determines
the time between successive refreshes. It
consists of a programmable, 6-bit modulo-n
prescaler (n=1-64), driven at one-fourth
the VMPU clock rate. Refresh can be
disabled by programming the refresh
Enable/Disable bit. If this register is not
needed for memory refresh, it can function
as' an on-board internal timer.

46

Architecture (Continued)

0
RESERVED
o 0 0 0 0 0 0 o 0 o I
TR SR DU N TR N T TR S S | >W°'“’

FLAG AND
I;zalsi eu]vn: [NVIE o 0 0 [c l z ‘ s lwvl o{n|o ﬂ CONTROL
i1 . WORD
SEGMENT NUMBER o J
IDYA PR S I“l“l“l"l“t*"l“

r SEGMENT OFFSET
N S N SN N NN AU S

PROGRAM
COUNTER

) I N S TS |

Z8003

15 a

FLAG AND

In]snilzn;vl![wlqo [nlclzlsiww]ulnl 0 nl CONTROL
Ll WORD

PROGRAM
COUNTER

I ADDRESS
L [l L L H L 1 L L 1 1 i

lill

28004

Figure 3. Program Status Registers

I ° [SEGMENT NUMBER
1 L | L

I UPPER OFFSET
Il | | 1 L | 1

| UPPER POINTER
! 1 L L L L L L i 1 L 1 Il |

28004

Figure 4. Z8003 Program Status Area
Pointer (PSAP) Registers

[] AT

Figure 5. Refresh Register/Counter

System and Normal Modes

The VMPUs can run in either System or
Normal mode. In System mode, all
instructions can be executed and all VMPU
control registers can be accessed. This mode
is useful in programs that perform operating
system functions.

In Normal mode, some instructions, such
as the I/O instructions, cannot be executed.
In addition, the VMPU control registers
cannot be accessed. This mode is intended
for use by application (user) programs.

The use of separate VMPU System and
Normal modes promotes the integrity of the
system by preventing user programs from
having access to the operating system and
the control registers. The current operating
mode is specified by the S/N bit of the FCW
register. The complement of the state of this
bit is output by the VMPU on line N/S.
Output N/S can be used to separate System
and Normal address spaces.

Address Spaces

Programs and data can be located in the
main memory of the computer system or in
peripheral devices. In either case, the
location of the information must be specified
by an address before that information can be
accessed. A set of these addresses is called
an address space.

The VMPUs support two different types of
addresses and thus two categories of address

space:

B Memory addresses, which specity
locations in main memory.

®m [/O addresses, which specify the ports
through which peripheral devices are
accessed.

Within the two general types of address
spaces (memory and I/O), there are several

47

Address Spaces (Continued)

subcategories. Figure 6 shows the address
spaces that are available on both types of
VMPUs.

The ditference between the Z8003 and the
78004 VMPUs lies not in the number and
type of address spaces, but rather in the
organization and size of each space. For the
728003, the memory address space contains
8M bytes of addresses grouped into 128
separate segments. For the Z8004, the
memory space is a homogeneous collection
of 64K bytes of addresses. In both the Z8003
and the Z8004, each /O address space
contains 32K byte port addresses and 64K
word Port addresses.

When an address is used to access data,
the address spaces can be distinguished by
the state of the status lines (STo-ST3) and by
the value of the Normal/System line (N/S).
The states of the four status lines are
determined by the way the address was
generated. The value of the N/S output line
is the complement of the S/N control bit in
the FCW register.

The 23-bit segmented addresses are
divided into 7-bit segment identifiers
(segment numbers) and 16-bit offsets to
address locations relative to the beginning of
the specitied segment. In hardware,
segmented addresses are contained in a
register pair or in a long-word memory
location. The segment number and offset of
an address can be manipulated separately or
together by all available word and long word
operations.

In an instruction, a segmented address can
have one or two representations; long-offset
or short-otfset. A long-offset address
occupies two words, with the first word
containing the 7-bit segment number and the
second word containing the 16-bit offset. A
short-offset address requires only one word,
which combines the 7-bit segment number
with an 8-bit offset (range 0-256). The short-
offset mode allows very dense encoding of
addresses and minimizes the need for long

addresses to directly access each 8M byte
address space.

Nonsegmented addresses are 16 bits and
permit access of up to 64K of contiguous
byte locations.

The Z8004 operates only in the
nonsegmented address mode. The Z8003 can
operate in either the segemented or
nonsegmented address mode. When the
28003 is in nonsegmented mode, all address
representations assume implicitly the segment
number contained in the 7-bit segment

number field of the PC.
I/O Addresses, There is a set of /O

instructions that perform 8-or 16-bit transfers
between a VMPU and its I/O devices. /O
devices are addressed with 16-bit I/O port
addresses. An /O port address is similar to
a memory address; however, the I/O address
space is not part of the memory address
space. Memory-mapped [/O can be
implemented by dedicating memory locations
to I/0O device registers. Two types of /O
instruction are available. Standard and
Special. Each type has its own address
space. Special I/O instructions are used for
loading and unloading memory management
units.

MEMORY ADDRESS SPACES

SYSTEM MODE | NORMAL MODE

INSTRUCTIONS | INSTRUCTIONS
DATA DATA
STACK STACK

WO ADDRESS SPACES

SYSTEM MODE

STANDARD O
SPECIAL 1O

Figure 6. Address Spaces on the Z8003 and Z8004

48

Instruction Addressing Modes

The information included in VMPU
instructions consists of the function to be
performed, the type and size of data
elements to be manipulated, and the
locations of the data elements. Locations are
designated by register addresses, memory
addresses, or [/O addresses. The addressing
mode of a given instruction defines the
method used to compute the address.
Addressing modes are explicitly specified or
implied by the instruction. Locations are
designated using one of the following
addressing modes:

m Register Mode (R). The data element is
located in one of the 16 general-purpose
registers or a control register.

a Immediate Mode (IM). The data element
is located in the instruction.

m Indirect Register Mode (IR). The data
element can be found in the location
whose address is given in a specified
register.

m Direct Address Mode (DA). The data
element can be found in the location
whose address is given in the instruction.

® Index Mode (X). The data element can
be found in the location whose address is
the sum of the contents of an index value
in a specified register and an address in
the instruction.

u Relative Address Mode (RA). The data
element can be found in the location
whose address is the sum of the contents
of the Program Counter and a
diplacement given in the instruction.

m Base Address Mode (BA). The data
element can be found in the location
whose address is the sum of a base
address in a specified register and a
displacement given in the instruction.

m Base Index Mode (BX). The data element
can be found in the location whose
address is the sum of a base address in
one specified register and an index value
in a second specified register.

Instruction Set

Major Groups. The major groups of
instructions provided by the VMPU are
described in the following paragraphs. A
detailed summary of the instructions is
presented in Table 3 (located at the back of
this document).

Load and Exchange. These instructions
move data among registers or between
registers and main memory.

Arithmetic. These instructions perform
integer arithmetic. The basic instructions
(e.g., add, subtract, multiply and divide) in
this group use standard two’s complement
binary format. Support is also provided for
implementing BCD arithmetic.

Logical. These instructions perform logical
operations (i.e., AND, OR, XOR, and
complementation) on the bits of specified
operands. The operands can be bytes or
words. The Test Long (TESTL) instruction,

however, permits logical operations to be
performed on 32-bit quantities.

Program Control. These instructions affect
the Program Counter, thereby controlling
program flow.

Bit Manipulation. These instructions
manipulate individual bits in registers or
main memory.

Rotate and Shift. These instructions shift
and rotate the contents of registers.

Block Transfer and String Manipulation.
These instructions perform string
comparisons, string translations, and block
transter functions.

Input/Output. These instructions transfer
bytes, words or blocks of data between
peripheral devices and the VMPU registers
or main memory.

49

Instruction Set (Continued)

VMPU Control. These instructions modify instruction). The following six flags are
VMPU control and status registers or perform available for use by the programmer and the
those functions that do not fit into any of the processor:

preceding instruction groups.

m Carry (C)
Extended. These instructions perform » Zero (Z)
Extended Processor Unit (EPU) internal = Sign (S)
operations, data transfers between memory m Parity/Overflow (P/V)
and EPU, data transfers between EPU and R A
the VMPU, and data transfers between EPU ® Decimal-Adjust (D)

m Half Carry (H)

flag registers and the VMPU Flag And
Control Word (FCW). Condition Code. Flags C, Z, S, and P/V are

Proc r Flags. The processor flags gsed to.control the operation of conditional
contained by the program status registers instructions (such as Condi?ional Jump). The
provide a link between sequentially executed operations performed by this type of
instructions. The link is provided in the mStr‘?’?tlon depend on v‘v}.]ether‘or not a

sense that the result of executing one spec1f1e<.:1 Boolean cpndltlon exists on the four
instruction may alter one or more flags. The flags. Sixteen functions of the flag settings
new flag values (states) can then be used to four_ld to b_eA frequently used are en(.:Oded in a
determine the operation of a subsequent 4-bit condition co,d,e (CQ) held’,WhICh forms
instruction (typically a conditional jump a part of all conditional instructions. These

16 codes are described in Table 1.

CC Field
Code Meaning Flag Settings Binary Hex
F Always false —~ 0000 0
T Always true — 1000 8
z Zero Z =1 0110 6
NZ Not zero Z=0 1110 E
C Carry C =1 0111 7
NC No carry C =0 1111 F
PL Plus 5=0 1101 D
Ml Minus S =1 0101 5
NE Not equal Z=20 1110 E
EQ Equal Z =1 0110 6
ov Overflow PV =1 0100 4
NOV No overflow P/V =0 1100 C
PE Parity is even P/V =1 0100 4
PO Parity is odd PV =20 1100 C
GE Greater than or equal (signed) (S XOR P/V) = O 1001 9
LT Less than (signed) (S XOR P/V) = 0001 1
GT Greater than (signed) |Z OR (S XOR P/V)i =0 1010 A
LE Less than or equal (signed) |Z OR (S XOR P/V)| = 1 0010 2
UGE Unsigned greater than or equal C=0 1111 F
ULT Unsigned less than C =1 Olll 7
UGT Unsigned greater than {(C =0)AND(Z = 0)] =1 1011 B
ULE Unsigned less than or equal (CORZ) =1 0011 3

Note: Some condition codes have identical flag settings and binary fields in the instruction, i.e., Z = EQ, NZ = NE, C = ULT,
NC = UGE, OV = PE, NOV = PO.

Table 1. Condition Codes

50

Multi-Microprocessor Resource Control

The Z8003 and Z8004 VMPUs include both
hardware and software support for
controlling access to shared resources in
multi-microprocessor systems. VMPU pins MI
(Multi-Micro In) and MO (Multi-Micro Out)
and instructions MSET (Set MO), MREQ
(access request), MBIT (Test MI), and MRES
(reset MO) can be used to form a prioritized

resource access control system. Such a
system would, for a VMPU, 1) issue requests
for access to a shared resource, 2) test the
access status for the resource (available/not
available) and 3) when access is granted,
exclude all other VMPUs in the system from
the resource until use of the resource is
complete.

Test and Set Instruction (TSET)

The TSET instruction implements
synchronization mechanisms in
multiprogramming and multiprocessing
environments. TSET tests and sets
semaphores that control access to shared
resources. The testing and setting of a
semaphore requires the semaphore to be
read from memory, modified, then written
back into the same memory location. To
prevent other processors from requesting
access to a resource during a test and set
process, status code 1111 is placed onto
status lines STp-ST3 during the data read

transaction to specify that an uninterruptable
memory operation is taking place. Status
code 1111 is particularly useful in a multiple
microprocessor environment to permit
external circuitry to preclude memory access
by another device between the read
transaction and the write transaction of the
test and set operation. Request input
BUSREQ is also disabled during a test and
set operation to ensure that the test and set
operation is not interrupted; this action is
useful in a single-processor system.

Extended Processing Architecture

The VMPU has an Extended Processing
Architecture (EPA) facility which extends the
basic functions of the VMPU by using
external devices called Extended Processing
Units (EPUs). A special set of extended
instructions controls the operations to be
performed by each EPU. When a VMPU

encounters an extended instruction, it either

traps the instruction, or it performs the data
transfer portion of the instruction. The data
manipulation portion of the instruction is
executed by the involved EPU. Whether the
VMPU traps or transfers data depends on the
setting of an EPA bit in its Flag and Control
Word (FCW) status register.

Exceptions

The Z8003 and Z8004 VMPUs support four
types of exceptions (conditions that alter the
normal flow of program execution):
interrupts, traps, instruction aborts, and
reset.

Interrupt and Trap Structure. The Z8003
and 728004 VMPUs have a flexible and

powerful interrupt and trap structure.
Interrupts are external events requiring
VMPU attention and are generally triggered
by peripherals needing service. Traps are
synchronous events resulting from the
execution of certain instructions.

Both Z8003 and Z8004 VMPUs support
three interrupts: nonmaskable (NMI),

51

Exceptions (Continued)

vectored (VI), and nonvectored (NVI).

Both VMPUs support several types of
traps: System Call, EPU instruction, and
privileged instruction. In addition, the Z8003
supports a Segment/Address Translation
(SAT) trap. Of the above traps, only the last
is initiated by external events. Such events
are normally generated by a memory
management system. The remaining traps
occur when instructions limited to the System
mode are used in the Normal mode, when a
System Call instruction is executed, or when
an EPA instruction is encountered.

The descending order of priority for traps
and interrupts is: internal traps, nonmaskable
interrupts, segment/address translation traps,
vectored interrupts, and nonvectored
interrupts.

When an interrupt or trap occurs, the
current program status information is
automatically pushed onto the System stack.
The new program status is then automatically
loaded into the Program Status registers from
the Program Status Area in System program
memory. This area of memory is identified

W T2

Tw Tw Tw Tw

Tw

by the Program Status Area Pointer (PSAP).

Instruction Abort Function. The VMPU
monitors its ABORT input during each bus
transaction it generates. The timing for an
Instruction Abort operation is shown in
Figure 7. If the ABORT input is asserted
during clock cycle Ty of a memory access,
the currently executing instruction is
automatically aborted. If no abort is
indicated but input WAIT is asserted, input
ABORT is also tested during each wait cycle
(Ty). When an Instruction Abort condition is
indicated (ABORT is asserted) the WAIT
input must also be asserted for five cycles to
permit the VMPU internal control mechanism
to abort the current instruction. When the
WAIT input is deasserted, the VMPU
acknowledges any pending interrupt request.
Therefore, the memory management circuitry
that caused the interrupt to be aborted
should also request an interrupt to the
software routine that restores the VMPU
registers and the main memory so that the
aborted instruction can be reissued.

)]

]

S

=

I
t
i
!
|
|
|
I
Towf b
Th
b
!
U

i

WAIT ‘ '

m__\

VIRTUAL ADDRESS
ABORT

NOTE: * = Clock Sample Points

SAT
ABORT
(1f4)

ACKNOWLEDGE
CYCLE

Figure 7. Instruction Abort Timing

52

Virtual Memory Systems

Virtual memory systems permit programs
to reference an address space that exceeds
the main (physical) memory. In virtual
memory systems, high-speed main memory is
supported by medium- and low-speed
storage devices (secondary memory) such as
hard disks or floppy disks. When a VMPU in
a virtual system issues an address that
references information not in main memory,
a software swap operation must be initiated.

The swap retrieves the block containing
the referenced location, loads it into main
memory, and restarts the aborted mainstream
program at the point of interruption.

The swap operation is transparent to the
user and to the executing program;
therefore, the system appears to have a
memory that is not constrained by physical
size.

The maximum size of a virtual memory is
determined by the address structure used
and by the capabilities of the system memory
management hardware and software.

Segmented and Paged Virtual Memories.
External circuitry can be used to implement
either a segmented virtual memory or a
paged virtual memory. In a segmented
virtual memory, information is transferred
between main memory and secondary
storage devices on a segment-by-segment
basis. The Z8003 VMPU permits use of
variable-length segments of up to 64K bytes.

In a paged virtual memory system, each
segment is divided into fixed-size pages
(standard size is 2048 bytes). Main memory
is divided into page “frames.” Information is
then transferred between main memory and
the secondary storage devices on a page-by-
page basis.

The Z8003 VMPU can support both
segmented or paged virtual memory systems.
The Z8004 supports only the paged virtual
memory approach.

External Hardware Support. The detection
of a logical address that references a location
outside main memory (i.e.;. an addressing
fault) and the initiation of the required swap

operation must be performed by memory
management circuitry external to the VMPU.

A swap operation is started by the
initiation of a Segment/Address Translation
(SAT) trap request function in the VMPU.
Since the Z8004 does not have a SAT input,
one of the NMI, VI or NVI inputs must be
used instead. Low levels on VMPU inputs
ABORT, SAT and WAIT initiate SAT
requests.

These inputs are sampled at the falling
clock of the second clock cycle of a bus
transaction. Input WAIT must be asserted for
at least five clock cycles. Input ABORT must
be deasserted on or before the rising edge of
the WAIT signal. The same timing can be
used for both WAIT and ABORT. Input SAT
should be asserted until the trap
acknowledge bus transaction is indicated by
78003 VMPU status code 0100.

External circuitry is needed to record the
information for instruction restart. The
following assumptions about the operating
system must also be true:

8 The fault handler does not generate a
fault until all critical data is saved.

m Accessing the System stack never causes
a fault. (Either the segment is in memory
or a memory management mechanism
warns of a potential stack overflow).

m /O buffers are always in main memory,
so I/O instructions never cause a fault.

® The Program Status Area is always in
main memory.

The following information must be saved
by external circuitry to restart the instruction
interrupted by the addressing fault:
® The value of the Program Counter during
the initial instruction fetch cycle (cycle
identified by status code 1101).

® The address that caused the fault.

® The code that was on the status lines
during the aborted cycle.

m For paged memories, the number of
successful data accesses made by the
instruction.

53

Virtual Memory Systems (Continued)

Software Support. The software required for
virtual memory operation normally consists of
a fault handler and a restart routine. The
fault handler is started during each VMPU
abort request operation. The fault handler is
responsible for saving information about the
aborted instruction and for the initiation of a
request which brings the segment (or page)
containing the referenced location in main
memory. The state of the aborted program
(Flag and Control Word (FCW), Program
Counter (PC), and the register file must be
saved and another process dispatched while
the missing segment (or page) is being
fetched from secondary memory.

When the page or segment containing the
referenced location is loaded into main
memory, an instruction restart routine must
be executed. This instruction restart routine
must restore the operating environment that
existed when the instruction/program abort
was initiated.

This routine must establish the PC value
that points to the aborted instruction. It must
also decode the instruction’s opcode to
determine whether or not any of the VMPU'’s
registers were modified before the instruction
execution cycle in which the abort occurred.
If registers were modified, the instruction
restart routine must return these registers to
a state in which the restarted instruction
behaves as if no abort had occurred. The
flow chart in Figure 8 illustrates a possible
control sequence for a software restart
routine. The instructions requiring
remodification of system registers and the

manner in which these registers must be
modified depend upon the type (segmented
or paged) of virtual memory system
implemented.

INSTRUCTION
ABORT

READ ABORT
DATA FROM MEMORY
MANAGEMENT

SYSTEM

'

BACK-UP
PROGRAM COUNTER

ABORT DURING
INSTRUCTION
FETCH CYCLE?

ABORTED
INSTRUCTION

MODIFIED
REGISTER FILE?,

RESTORE
MODIFIED REGISTERS
TO CORRECT STATE

'

&

Figure 8. Flow Chart of an Instruction Restart Routine

Bus Transactions

Status Outputs. The VMPUs provide output
that specifies the type of transaction on the
Address/Data bus. QOutput line R/W specities
whether a read or write operation is
involved. Output line B/W specities whether
the-transaction_involves byte or word data.
Qutput line N/S specifies the mode of
operation, Normal or System. In addition to

these lines, output lines STp-ST3 encode
additional characteristics of the current bus
transaction. These lines can present any of
sixteen 4-bit status codes which define
specific characteristics of the current bus
transaction. The available status codes are
listed and defined in Table 2.

54

Bus Transactions (Continued)

ST5-STo Definition
Binary
0000 Internal Operation

0001 Memory Refresh

0010 I/O Reference

0011 Special I/O Reference (e.qg., to an

MMU)

Segment/Address Translation Trap

Acknowledge

0101 Nonmaskable Interrupt
Acknowledge

0100

0110 Nonvectored Interrupt Acknowledge
0111 Vectored Interrupt Acknowledge
1000 Data Memory Request

1001 Stack Memory Request

1010 Data Memory Request (Extended

Processing Architecture)
1011 Stack Memory Request (Extended
Processing Architecture)
Instruction Space Access
Instruction Fetch, First Word
Extended Processing Unit-VMPU
Transter
1111 Bus Lock, Data Memory Request

———
o — —
— O O
O — O

Table 2. Status Codes

Memory Read and Write. Memory read and
instruction fetch cycles are identical, except
for the status code on the STp-ST3 outputs.

Memory write is similar to memory read
except for the R/W status and the timing of
DS and data valid true. During a memory
cycle, a 16-bit offset address is placed on the
ADg-AD;5 outputs early in the first clock
period (Figura 9). In the Z8003, a 7-bit
segment number is also output on SNg-SNg
one clock period earlier than the 16-bit
address offset. Issuing the segment number
early minimizes address translation overhead
by enabling the memory management
circuitry to overlap its operations with the
VMPU instruction execution cycle.

A valid address is indicated by the rising
edge of Address Strobe (AS). Status and
mode information becomes valid early in the
memory access cycle and remains stable
throughout it. The access cycle can be

extended in length by the addition of wait
cycles. .

The Read/Write line (R/W) indicates the
direction of the data transter. R/W is High
for transfers to the VMPU. R/W is Low for
transfers from the VMPU.

Word data (B/W is Low) to or from the
VMPU is transmitted on lines ADg-ADjs5.
Byte data to the VMPU is transmitted in
ADjg-AD7, from odd addresses (ADg=1) and
in ADg-AD15 from even addresses (ADg=0).
Byte data from the VMPU is replicated in
ADg-AD7 and ADg-AD, 5, regardless of
address.

170 Transactions. [/O transactions, which
are generated by the execution of I/O
instructions, move data to or from
peripherals or VMPU support devices. As
shown in the timing diagram presented in
Figure 10, I/O transactions have a minimum
length of four clock cycles; wait cycles can
be added to lengthen transaction periods to
meet the needs of slow peripherals. Status
line outputs indicate whether access is to the
Standard /O (0010) or Special I/O (0011)
address spaces.

1/O transactions are always performed with
the VMPU in System mode (N/S = Low).
The rising edge of AS indicates that a valid
address is present on lines ADg-AD;5. Since
the I/O address is always 16 bits long, the
segment number lines in Z8003 are
undefined. o

For byte transfers (B/W = High) in
Standard I/O space, addresses must be odd;
for byte transfers in Special I/O space,
addresses must be even.

Word data (B/W = Low) to or from the
CPU is transmitted on ADg-AD;5. Byte data
(B/W = High) is transmitted on ADgp-ADi5
for Special 1/O. This allows peripheral
devices or CPU support devices to attach to
only eight of the 16 ADg-AD;¢ lines. The
Read/Write line (R/W) indicates the direction
of the data transfer: peripheral-to-CPU
(Read: R/W_= High) or CPU-to-peripheral
(Write: R'W = Low).

55

Bus Transactions (Continued)

Wait Add-On Cycles. As shown in Figures 9 transaction before data is sampled or DS is
and 10, the WAIT input line is sampled on a deasserted (goes High). During an added
falling edge of CLK one cycle before data is wait cycle. Input WAIT is sampled again on
sampled (DS is Low for a read or write the falling clock edge: if it is Low, another
operation). If the WAIT input line is Low wait cycle is added to the transaction.

when sampled, another cycle is added to the

Ty T2 Ts

cLocK l

%
2|
S

fa— INSERT WAIT STATE(S) AT THIS TIME

STATUS ><
(B/W, N/S,
STp-STy)
SNo-SNg SEGMENT NUMBER X x
= [__/

/__
AD anmonv ADDRESS :)- -
58 \ /_
W __/
;D MEMORY ADDRESS| X DATA OUT
. /]
RIW __\

READ

WRITE

N IRl |

Figure 9. Memory Read and Write Timing

56

Bus Transactions (Continued)

This use of the WAIT input permits

or I/O devices that are not yet ready for data

transactions to be extended arbitrarily to transfer.
accommodate, for example, slow memories
n n Twa i
-
CLOCK | I
WAIT
| & INSERT WAIT STATE(S) AT THIS TIME
_STATUS X x
(B/W, STy-STy)
NIS
Low
x __/
—_ HIGH
MREQ
INPUT T T
A0 ~ PORT ADDRESS| o= mw o o o <
s \ /
“_/ _
ouTPUT - r
AD X PORT ADDRESS X DATA OUT x
5

RIW

HEN

Figure 10. Input/Output Transaction

Bus Transactions (Continued)

Memory Refresh Timing. When the 6-bit
prescaler in the refresh counter has been
decremented to zero, a refresh cycle is
started (Figure 11). The 9-bit refresh counter
value is put on ADg-ADg; lines ADg-AD15
are undefined. Unless disabled, the
presettable prescaler runs continuously,
therefore any delay in starting a refresh
cycle is not cumulative.

While the STOP input is Low, a continous
stream of memory refresh cycles is executed
without using the refresh prescaler. The
refresh count, however, is incremented.

Internal Operation Timing. Certain

instructions, such as multiply and divide,
need additional time to execute internal
operations. In these cases, the VMPU goes
through a sequence of internal operation
machine cycles, each threee to eight clock
cycles long (Figure 12). This allows fast
response to bus and refresh requests because
a bus request or a refresh cycle can be
inserted at the end of any internal machine
cycle.

Although the address outputs during clock
cycle T are undefined. Address Strobe (AS)
is generated to satisfy the requirements of
Z2-BUS-compatible peripherals and self-
refresh dynamic memories.

cLocK

8To-8Ty

RAEFAESM

I

A
T\ /
O\

AD X REFRESH ADDRESS

s

RW, MW, mi]

SAME AS PREVIOUS CYCLE

Figure 11. Memory Refresh Timing

58

Bus Transactions (Continued)

Reset Function. A Low on the RESET input
causes the following results within five clock
cycles (Figure 13):
1. @Q'AD15 are 3-stated.
2. AS, DS, MREQ, BUSACK, MO, and
STy-ST3 are forced High.
3. SNg-SNg are forced Low.
4. Refresh is disabled.
5. R/W, B/W and N/S are undefined.
When RESET is again High, the 78003
VMPU executes three memory read cycles in

a System mode of operation. During these
three word read cycles, the VMPU reads, in

Ty

sequence, the following information from

segment 0:

1. The flag and control word (FCW) from
offset location 0002.

2. The Program Counter segment number
from location 0004 and offset from
location 0006.

In the Z8004 VMPU, only two read cycles
are performed. During the first cycle, the
FCW is read from location 0002. During the
second cycle, the 16-bit PC value is read
from location 0004. The program is started
during the following machine cycle.

Ty Ta

cLoCK

[1

wAaIT

STo-3T, X

INTERNAL OPERATION

]
= __/

a0 X

UNDEFINED

MREQ, DS, RIW

HIGH

BIW

UNDEFINED

SAME AS PREVIOUS CYCLE

Figure 12. Internal Operating Timing

59

Bus Transactions (Continued)

Burwy] jesey gl @anbrg

\ HVYSNY

€1s-%13

HOtH 1Y

sy

60

Bus Request. Interrupt and Acknowledge

A low on the BUSREQ input indicates to
the VMPU that another device is requesting
the address/data and control lines. The
asynchronous BUSREQ input is synchronized
at the beginning of any machine cycle
(Figure 14). If BUSREQ is Low, an internal
synchronous BUSREQ signal is generated,
which, after completion of the current
machine cycle, causes the BUSACK
output to go Low and all bus outputs to go
into the high-impedance state. The
requesting device (typically a DMA) can the
controll the bus.

When BUSREQ is released, it is
synchronized with the rising clock edge. The
BUSACK output goes High one clock period
later to indicate that the VMPU will take
control of the bus.

Interrupt and Segment/Address
Translation Trap Request and
Acknowledge. Any High-to-Low transition
on the VMPU'’s NMI input (Figure 15) is
asynchronously edge-detected and sets the
internal NMI latch. The VI, NVI, and SAT
inputs, as well as the state of the internal
NMI latch, are sampled at the beginning of
Ts.

In response to an interrupt or trap, the
subsequent IFy cycle is exercised. The
Program Counter, however, is not updated,
but the System Stack Pointer is decremented
in preparation for storing status information
on the System stack.

The next machine cycle is the interrupt
acknowledge cycle. This cycle has five
automatic wait states and additional wait
states are possible.

Y M CYCLE
| 2 T n Tx

CLOCK

SUSREQ

Tx

---FI_P_TI_TU_

S AVAILABLE

Tx Tx Tx Tx

/

-

BUSACK

_ m}
AS e

SN >
/
AD -
J
WREQ, DS, \
$T5-8T,,) ST
BIW, RIW, NI /7

_

o e e i —‘ SAME AS PREVIOUS CY/

I

Figure 14. Bus Request/Acknowledge Timing

I

61

Burmrr] abpaimouyoy/isenbey ‘doi] uonp[supi] sseIppy/iuswbag pup jdnusiuf "¢1 @by

—— X

.||\||/ sd
I90ITMONNIVY x

tig-0s8

X
/l-l me
;

a\l

Y " €L .y ey AT AL ALJY oy DY () esacessese 3% z) "y ;

S3LVLS LIV JILVNOLNY

ONIAVS 31040 {oauonsn NOILONWLSNI
4 HDL34 ANY 40 31040
suvis | JoazmoNNIY NOLLONULSNI INIHOVN 1SV |

Bus Request. Interrupt and Acknowledge (Continued)

62

Bus Request, Interrupt and Acknowledge
(Continued)

After the last wait state, the VMPU reads
the information on ADg-AD;5 and stores it
temporarily, to be saved on the stack later in
the acknowledge sequence. This word
identifies the source of the interrupt or trap.
For internal traps, the identifier is the first
word of the trapped instruction. For external
events, the identifier is the contents of the
Data bus as sampled during T3 of the
acknowledge cycle. During nonvectored and
non-maskable interrupts, all 16 bits can

represent peripheral device status
information. For the vectored interrupt, the
low byte is the jump vector, and the high
byte can be used for extra status. For a SAT
trap (assuming that a Z8010 MMU Memory
Management Unit is used) the high byte is
the memory management unit identifier and
the low byte is undefined. o

After the acknowledge cycle, the N/S
output indicates the automatic change to
System mode.

Pin Descriptions

The Z8003 VMPU is produced in a 48-pin
package; the 28004 VMPU is produced in a
40-pin package. The pin functions of both
the Z8003 and Z8004 are illustrated in Figure
16; the pin assignments are illustrated in
Figure 17. The signal names assigned to the
VMPU I/O pins are listed alphabetically and
are described in the following paragraphs.

AS ADs5 fa—
BUS
TiMING o8 ADu fe—s
<— NREG ADy3 [
ADy; |
< READWRITE ADy Jt—s
«——] NORMAL/SYSTEM ADyo |a—e
~«— BYTE/WORD ADy s
ADy [«—> | ADDRESS/
TATUS
b u -—{sT, AD; fe—» [DATA
g ST, ADy —
STy ADs [t
--—r{ST, AD, >
— T AD |
2808 zg003
WAIT VMPU AD; [=—>
cournor. 0 Ay s
| RESET ADy [t
——| BUSREQ
°°""°" ~-—] BUSACK SNy f—o
SNs }—
| NWIT SNy —>
SEGMENT
INTERRUPTS(—»|Vi SNy p—> NUMBER
—] W SNy —
SNy |—
MULTI-MICRO | Wi SNo —>
CONTROL| <o
$ATja—— SEGMENT-PAGE
or TRANSLATION
TRAP

Pt

Vee GND CLK

Figure 16. Logic Functions

ABORT. Abort Request (input, active Low).
This input is used to implement virtual
memory. 1t is asserted by external circuitry
when an address does not correspond to a
location in main memory.

When ABORT is asserted_with input SAT
in the Z8003, or with input NMI, VI, or NVI
in the 28004, it initiates an Abort interrupt in
the VMPU.

-—]as ADys [a—s-
P e L A1 [—>
~-——{ MREC ADy; fa—s-
AD,; >
~«—— READWRITE AD;y |a—sm
~4—— NORMAL/SYSTEM ADyg f—n
~+—— BYTE'WORD AD; fe—
ADs f=— | ADDRESS/
STATUS —-—]sT, AD; f+—» [DATA
—-——]sT, ADg f—
~—]sT, AD; [e—>-
«—]sT, AD, s
—| 2567 AD; |-
S R
con‘rlot —a] STOP ADy fe—>
—»| RESET ADg |
{ —{8UsSREQ
°°""‘°‘- ~«—4 BUSACK
—»] NV
INTERRUPTS —| Vi
—] Vi
MULTI- mcno{ —™
CONTROL| «—]wo

b1t

Vec GND CLK

63

Pin Descriptions (Continued)

ADg-AD; 5. Address/Data (inputs/outputs,
active High, 3-state). These multiplexed
address and data lines are used both for I/O
and memory.

AS. Address Strobe (output, active Low,
3-state). The rising edge of AS indicates that
addresses are valid.

BUSACK. Bus Acknowledge (output, active
Low). A Low on this line indicates that the
VMPU has relinquished control of the bus.

BUSREQ. Bus Request (input, active Low).
This line must be driven Low to request the
bus from the VMPU.

B/W. Byte/Word (output, Low = Word,
3-state). This line defines the size of the data
being transferred.

CLK. System Clock (input). CLK isa + 5V

signle-phase, time-base input.

DS. Data Strobe (output, active Low,
3-state). This line strobe data in and out of
the VMPU.

ap,] 1 4[] a0,
aps]2 47 [] SN
ADy [3 46 [sns
AD, [4 4s] ao;
a0,; s 4[] ao,
Ao 6 43[] ap,
svoe [7 a2[] sn,
me a1] ap,
Ao 9 40{] a0,
A0y, [10 39 [] ao,
vee [11 38] ao,
2 ze0os ¥ Psw

wil]1 wvmpu 36 Jano
SAT[1 3s [cLoex
wwi [1s 3|] &S
RESET [] 18 33 [] AsonT
wo [] 17 2[]ewW
WREG [18 3w IS
os [1o o[Jrw
s, 20 29 [] 8USACK
st, [21 28] warr
st, {22 27 [] sushEa
sto [] 23 26 JsN,
sng [24 [JsN,

MI, MO. Multi-Micro In, Multi-Micro Out
(input and output, active Low). These two
lines form a resource-request daisy chain
that allows only one VMPU in a multi-
microprocessor system to access a shared
resource at the same time.

MREQ. Memory Request (output, active
Low, 3-state). A Low on this line indicates
that a memory reference is in progress.

NMI. Nonmaskable Interrupt (edge-
triggered, input, active Low). A High-to-Low
transition on NMI requests a nonmaskable
interrupt.

N/S. Normal/System Mode (output, Low =
System mode, 3-state). N/S indicates the
current VMPU operating mode (System or
Normal).

NVI. Nonvectored Interrupt (input, active
Low). A Low on this line requests a
nonvectored interrupt.

RESET. Reset (input, active Low). A Low on
this line resets the VMPU.

aps [1 40 [] ao,
a0, [2 39 [ao,
a0, [2 38 [] a0,
a0, [4 37 [] ane
a0 s 35 [] ao,
stop (] & 35 [] Aps
w(d 34[] a0,
Ao [J 8 33[]J ao,
Ao [@ 32[] a0,
vee 010 Leg0s M ON
Wl ymey 30 |3 crock
Wi 12 k]
wm] 18 28 [} RESERVED
RESET (] 14 27[] ew
wo] 15 26 [J Nr§
wRea [16 25 [] rW
os [] 17 24 [] BUSACK
st [e 23 [warr
s [18 22 [} BUSREG
ST [20 21 sTe

Figure 17. Pin Configuration

64

Instruction Set Summary

The Z8003/04 instruction set is presented in
the instruction set summary. This summary
lists the mnemonics, operands, addressing
modes, timing, and operation for each
instruction.

Timing is given as the number of CPU
clock cycles required for instruction
execution. Timing requirements are given for
the three possible addressing representations
used in word, byte and long word
operations:

m NS nonsegmented addresses
® SS segmented short-offset adddresses
m SL segmented long-offset addresses

The SS and SL address representations
apply only to those instructions for which the
address of the operand is contained within
the instruction itself. The only instructions of

this type are those using the DA and X
addressing modes.

With few exceptions, timing requirements
are the same for all instructions in either
segmented or nonsegmented mode, except
for those instructions that employ the SS and
SL addresses. The timing for these
instructions will differ since the number of
fetches needed to load the address, one word
or two words, will vary.

Note

Timing values are given in the SS and SL columns
of the instruction set summary for all addressing
modes, even where the address representation does
not apply. These values are given to indicate that the
time requirements are the same for both segmented
and nonsegmented modes.

Instruction Set Summary

The Z8003/4 provides the following types
of instructions:

® Load and Exchange
m Arithmetic

m Logical

m Program Control

Bit Manipulation

Rotate and Shift

Block Transfer and String Manipulation
Input/Output

CPU Control

65

Load and Exchange

Clock Cycles *

Mnemonics Operands Addr. Word. Byte Long Word Operation
Mode NS SS SL NS SS SL
CLR dst R 7 7 7 Clear
CLRB 1R 8 8 8 dst « 0
DA 11 12 14
X 12 12 15
EX R. src R 6 6 6 Exchange
EXB 1R 12 12 12 R & src
DA 15 16 18
X 16 16 19
LD R. src R 3 3 3 5 5 5 Load into Register
LDB M 7 7 7 11 11 11 R « src
LDL M 5 (byte only)
1R 7 71 17 11 11 11
DA 9 10 12 12 13 15
X 10 10 13 13 13 16
BA 14 14 14 17 17 17
BX 14 14 14 17 17 17
LD dst. R IR 8 8 8 11 11 11 Load into Memory (Store)
LDB DA 11 12 14 14 15 17 dst « R
LDL X 12 12 18 15 15 18
BA 14 14 14 7 17 17
BX 14 14 14 17 17 17
LD dst. IM IR 11 11 11 Load Immediate into Memory
LDB DA 14 15 17 dst « IM
X 15 15 18
LDA R.src DA 12 13 15 Load Address
X 13 13 16 R « source address
BA 15 15 15
BX 15 15 15
LDAR R. src RA 15 15 15 Load Address Relative
R — source address
LDK R. src M 5 5 8 Load Constant
Re<nn=20..15
LDM R.src.n IR 11 11 11 Load Multiple
DA 14 15 17 +3n R « src (n consecutive words)
X 15 15 18 n=1..16)
LDM dst.R.n IR 11 11 11 Load Multiple (Store Multiple)
DA 14 15 17 +3n dst < R (n consecutive words)
X 15 15 18 (n=1..16)
LDR R.src RA 14 14 14 17 17 17 Load Relative
LDRB R « src
LDRL (range - 32768... +32767)
LDR dst.R RA 14 14 14 17 17 17 Load Relative (Store Relative)
LDRB dst <« R
LDRL (range —32768... +32767)
* NS = Non-Seg d SS = Seg d Short Ofiset SL = Segmented Long Offset

66

Load and Exchange (Continued)

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Mode NS Ss SL NS Ss SL
POP dst.IR R 8 8 8 12 12 12 Pop
POPL IR 12 12 12 19 19 19 dst < IR
DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26
PUSH IR.src R 9 9 9 12 12 12 Push
PUSHL M 12 12 12 Autodecrement contents of R
IR 13 13 13 20 20 20 IR « src
DA 13 14 16 21 21 23
X 14 14 17 21 21 24
Arithmetic
ADC R. src R 5 5 5 Add with Carry
ADCB R < R + carry + src
ADD R. src R 4 4 4 8 8 8 Add
ADDB M 7 7 7 14 14 14 R« R + src
ADDL R 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP R. src R 4 4 4 8 8 8 Compare with Register
CPB M 7 7 7 14 14 14 R « src
CPL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP dst IM IR 11 11 11 Compare with Immediate
CPB DA 14 15 17 dst « IM
X 15 15 18
DAB dst R 5 5 5 Decimal Adjust
DEC dst,n R 4 4 4 Decrement by n
DECB IR 11 11 11 dst < dst - n
DA 13 14 16 (n=1..16)
X 14 14 17
DIV R. src R 107 107 107 744 744 744 Divide (signed)
DIVL M 107 107 107 744 744 744 Word: Ry, 1< Ry ny)+ SrC
IR 107 107 107 744 744 744 R, < remainder
DA 108 109 111 745 746 748 LongWord: Ry ,5 043 Ry o3+src
X 109 109 112 746 746 749 n.n+ 1 —remainder
EXTS dst R 111 11 11 11 11 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
INC dst,n R 4 4 4 Increment by n
INCB IR 11 11 11 dst « dst + n
DA 13 14 16 (n=1..16)
X 14 14 17

67

Arithmetic (Continued)

Clock Cycles
Mnemonics Operands Addr. Word, Byte Long Word Operation
Mode NS SS SL NS SS SL
MULT R, src R 70 70 70 282%282*282" Multiply (signed)
. MULTL IM 70 70 70 282*282*282* Word: R, n4+1 < Rp+ 1 - src
IR 70 70 70 2827282*282" Long Word: R, 13- Rp42 ne3- src
DA 71 72 74 2837284*286* * Plus seven cycles for each 1 in the
X 72 72 75 284*284*287* absolute value of the low order
word of the multiplicand
NEG dst R 7 7 7 Negate
NEGB IR 12 12 12 dst < -dst
DA 15 16 18
X 16 16 19
SBC R.src R 5 5 5 Subtract with Carry
SBCB R < R - src - carry
SUB R, src R 4 4 4 8 8 8 Subtract
SUBB M 7 7 7 14 14 14 R < R-src
SUBL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
Logical
AND
ANDB R, src R 4 4 4 And
M 7 7 7 R < R AND src
IR 7 7 1
DA 9 10 12
X 10 10 13
COM dst R 7 7 1 Complement
COMB IR 12 12 12 dst < NOT dst
DA 15 16 18
X 16 16 19
OR R, src R 4 4 4 OR
ORB ™M 7 7 17 R « R OR src
IR 7 7 17
DA 9 10 12
X 10 10 13
TEST dst R 7 7 17 13 13 13 Test
TESTB IR 8 8 8 13 13 13 dst OR 0
TESTL DA 11 12 14 16 17 19
X 12 12 15 17 17 20
TCC cc, dst R 5 5 5 Test Condition Code
TCCB Set LSB if cc is true
XOR R, src R 4 4 4 Exclusive OR
XORB M 7 7 1 R « R XOR src
IR 7 7 17
DA 9 10 12
X 10 10 13

68

Program Control

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Mode NS SS SL NS SS SL
CALL dst IR 10 15 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP <« PC
PC « dst
CALR dst RA 10 15 15 Call Relative
Autodecrement SP
@ SP <« PC
PC « PC + dst
(range — 4094 to + 4096)
DINZ R, dst RA i1 11 11 Decrement and Jump if Non-Zero
DBJNZ R<R -1
IfR # 0: PC « PC + dst
(range — 254 to 0)
IRET* - 13 16 16 Interrupt Return
PS « @ SP
Autoincrement SP
JP cc, dst IR 10 15 15 (taken) Jump Conditional
IR 7 7 7 (not taken) If cc is true: PC « dst
DA 7 8 10
X 8 8 11
RET cc 10 13 13 (taken) Return Conditional
7 7 1 (not taken) If cc is true: PC « @ SP
Autoincrement SP
sC src M 33 39 39 System Call
Autoincrement SP
@ SP + Old PS
Push instruction
PS « System Call PS
BIT dst. b R 4 4 4 Test Bit Static
BITB IR 8 8 8 Z flag < NOT dst bit specified by b
DA 10 11 13
X 11 11 14
BIT dst, R R 10 10 10 Test Bit Dynamic
BITB

Z flag < NOT dst bit specified by
contents of R

* Privileged instructions. Executed in system mode only.

Bit Manipulation

RES dst, b R 4
RESB IR 11
DA 13

X 14

4
11
14
14

11
16
17

Reset Bit Static
Reset dst bit specified by b

69

Bit Manipulation (Continued)

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation

Mode NS Ss SL NS SS SL
RES dst, R R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents R
SET dst, b R 4 4 Set Bit Static
SETB IR 11 11 11 Set dst bit specitied by
SET dst, R R 10 10 10 Set Bit Dynamic
SETB Set dst bit specified by contents of R
TSET dst R 7 7 17 Test and Set
TSETB IR 11 11 11 S flag < MSB of dst

DA 14 15 17 dst < all 1s

X 15 15 18

Rotate and Shift
RLDB R, src R 9 9 9 Rotate Left Digit
RRDB R, src R 9 9 9 Rotate Right Digit
RL dst, n R 6forn =1 Rotate Left
RLB R 7forn =2 Rotate dst by n bits (n = 1,2)
RLC dst, n R 6forn =1 Rotate Left through Carry
RLCB R 7forn =2 Rotate dst by n bits (n = 1,2)
RR dst, n R 6forn =1 Rotate Right
RRB R 7forn = 2 Rotate dst by n bits (n = 1,2)
RRC dst, n R 6forn =1 Rotate Right through Carry
RRCB R 7forn = 2 Rotate dst by bits (n = 1,2)
SDA dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right by contents of R
SDAL
SDL dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right by contents of R
SDLL
SLA dst, n R (13 + 3n) (13 + 3n) Shift Left Arithmetic
SLAB Shift dst left by n bits
SLAL
SLL dst, n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB Shift dst left by n bits
SLLL
SRA dst, n R (13 + 3n) (13 + 3n) Shift Right Arithmetic
SRAB Shift dst right by n bits
SRAL
SRL dst, n R (13 + 3n) (13 + 3n) Shift Right Logical
SRLB Shift dst right by n bits
SRLL

70

Block Transfer and String Manipulation

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Mode NS SS SL NS SSs SL
CPD Ry, src, IR 20 20 20 Compare and Decrement
CPDB Ry, cc Ry - src
Autodecrement src address
Ry « Ry« 1
CPDR Ry src, IR (11 + 9n) Compare, Decrement and Repeat
CPDRB Ry cc Ry - src
Autodecrement src address
Ry‘_ R\{ -1
Repeat until cc is true or Ry = 0
CP1 Ry, src, IR 20 20 20 Compare, Decrement and Repeat
CPDRB Ry, cc Rx — src
Autodecrement src address
RY - RY* 1
CPIR Ry, src IR (11 + 9n) Compare, Increment and Repeat
CPIRB Ry, cc Ry, src
Autoincrement src address
RYF RY -1
Repeat until cc is true or Ry= 0
CPSD dst, src, IR 25 25 25 Compare String and Decrement
CPSDB R, cc dst « src
Autodecrement dst and src addresses
R<R -1
CPSDR dst, src, IR (11 + 14n) Compare String, Decrement and Repeat
CPSDRB R, cc dst « src
Autodecrement dst and src addresses
R«<R-1
Repeat until cc istrue or R = 0
CPSI dst,src, IR 25 25 25 Compare String and Increment
CPSIB R,cc dst - src
Autoincrement dst and src addresses
R<R -1
CPSIR dst,src, IR 11 + 14n) Compare String,Increment and Repeat
CPSIRB R,cc ’ dst — src
Autoincrement dst and src addresses
R<R-1
Repeat until cc is true or R = 0
LDD dst,src, R IR 20 20 20 Load and Decrement
LDDB dst < src
Autodecrement dst and src addresses
R«<R -1
LDDR dst,src, R IR (11 + 9n) Load, Decrement and Repeat
LDDRB dst < src

Autodecrement dst and src addresses
R<R-1
Repeat until R = 0

71

Block Transfer and String Manipulation (Continued)

Mnemonics

Operands

Addr.
Mode

Clock Cycles

Word. Byte Long Word
NS §s SL NS Sss SL

Operation

LDI
LDIB

dst,src, R

IR

20 20 20

Load and Increment
dst < src
Autoincrement dst and src addresses

R«<R -1

LDIR
LDIRB

dst,src, R

IR

(11 + 9n)

Load. Increment and Repeat

dst < src

Autoincrement dst and src addresses
R<R -1

Repeat until R = 0

TRDB

dst,src, R

25 25 25

Translate and Decrement
dst < src (dst)
Autodecrement dst address
R«<R -1

TRDRB

dst,src, R

(11 + 14n)

Translate, Decrement and Repeat
dst — src (dst)

Autodecrement dst address
R«<R-1

Repeat until R = 0

TRIB

dst,src, R

25 25 25

Translate and Increment
dst < src (dst)
Autoincrement dst address

R<R -1

TRIRB

dst,src, R

IR

(11 + 14n)

Translate, Increment and Repeat
dst « src (dst)

Autoincrement dst address

R«<R -1

Repeat until R = 0

TRTDB

srcl,src2,R

IR

25 25 25

Translate and Test, Decrement
RH1 ¢ src 2 (srcl)
Autodecrement src 1 address
R«<R -1

TRTDRB

srcl,src2,R

IR

(11 + 1l4n)

Translate and Test, Decrement
and Repeat

RH! « src2 (srcl)
Autodecrement srcl address
R<R-1

Repeat until R = O or RHI = 0

TRTIB

srcl,src2,R IR

25 25 25

Translate and Test, Increment
RHI1 < src2 (srcl)
Autoincrement src 1 address

R«<R -1

72

Block Transfer and String Manipulation (Continued)

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Mode NS Ss SL NS S§ SL

TRTIRB srcl,src2,R IR (11 + l14n) Translate and Test. Increment
and Repeat
RH1 « src 2 (srcl)
Autoincrement srcl address
R«<R -1
Repeat until R = 0 or RH1 = 0

Input/Output

Clock Cycles
Mnemonics Operands Addr. Word, Byte Long Word Operation
: Mode NS SS SL NS Ss SL

IN* R.src IR 10 10 10 Input

INB* DA 12 12 12 R « src

IND* dst,src,R IR 21 21 21 Input and Decrement

INDB* dst < src
Autodecrement dst address
R<R -1

INDR* dst,src,R IR (11 + 10n) Input, Decrement and Repeat

INDRB* dst < src
Autodecrement dst address
R«<R-1
Repeat until R = 0

INI* dst,src,R IR 21 21 21 Input and Increment

INIB* dst < src

’ Autoincrement dst address

R<R -1

INIR* dst,src,R IR (11 + 10n) Input, Increment and Repeat

INIRB* dst < src
Autoincrement dst address
R«<R -1
Repeat until R = 0

ouT* dst,R IR 10 10 10 Output

OuTB* DA 12 12 12 dst <« R

OuTD* dst,src,R IR 21 21 21 OQutput and Decrement

OUTDB* dst « src
Autodecrement src address
R«<R-1

OTDR* dst,src,R IR (11 + 10n) Output, Decrement and Repeat

OTDRB* dst « src

* Privileged instructions. Executed in system mode only.

Autodecrement src address
R<R -1
Repeat until R = 0

73

Input/Output (Continued)

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Mode NS SS SL NS SS SL
OUTI* dst,src,R IR 21 21 21 Output and Increment
OUTIB* dst + src
Autoincrement src address
R<R -1
OTIR* dst,src,R IR (11 + 10n) Output, Increment and Repeat
OTIRB* dst « src
Autoincrement src address
R«<R -1
Repeat until R = 0
SIN* R, src DA 12 12 12 Special Input
SINB* R « src
SIND* dst,src,R IR 21 21 21 Special Input and Decrement
SINB* dst « src
Autodecrement dst address
R<R -1
SINDR* dst,src, R IR (11 + 10n) Special Input, Decrement and Repeat
SINDRB* dst « src
Autodecrement dst address
R<R-1
Repeat until R = 0
SINI* dst,src,R IR 21 21 21 Special Input and Increment
SINIB* dst < src
Autoincrement dst address
R«<R-1
SINIR* dst,src,R IR (11 + 10n) Special Input. Increment and
SINIRB* Repeat
dst « src
Autoincrement dst address
R«<R -1
Repeat until R = 0
SOUT* dst,src DA 12 12 12 Special Output
SOUTB* dst « src
SOUTD* dst,src, R IR 21 21 21 Special Output and Decrement
SOUTDB* dst « src
Autodecrement src address
R«<R-1
SOTDR* dst,src, R IR (11 + 10n) Special Output.Decrement and Repeat
SOTDRB* dst « src
Autodecrement src address
R<R -1
Repeat until R = 0
SOUTI* dst,src, R IR 21 21 21 Special Output and Increment
SOUTIB* dst « src

Autoincrement src address
R«<R-1

74

Input/Output (Continued)

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Mode NS SS SL NS SS SL
SOTIR* dst,src, R R (11 + 10n) Special Output, Increment and Repeat
SOTIRB* dst « src
Autoincrement src address
R<R -1
Repeat until R = 0
CPU Control
COMFLG flags 7 7 7 Complement Flag
(Any combination of C,Z,S,P/V)
DI* int 7 7 7 Disable Interrupt
(Any combination of NVI, VI)
EI* int 7 17 7 Enable Interrupt
(Any combination of NVI, VI)
HALT* (8 + 3n) HALT
LDCTL* CTLR,src R 7 7 7 Load into Control Register
CTLR « src
LDCTL* dst, CTLR R 7 7 1 Load from ControL Register
dst « CTLR
LDCTLB FLGR,src R 7 7 7 Load into Flag Byte Register
FLGR « src
LDCTLB dst, FLGR R 7 7 1 Load from Flag Byte Register
dst < FLGR
LDPS* src IR 12 16 16 Load Program Status
DA 16 20 22 PS « src
X 17 20 23
MBIT* 7 7 7 Test Multi-Micro Bit
Set S if MI is Low;
clear S if MI is High
MREQ* dst R (12 + 7n) Multi-Micro Request
MRES* 5 5 5 Multi-Micro Reset
MSET* 5 5 5 Multi-Micro Set
NOP 7 7 17 No Operation
RESFLG flag 7 7 17 Reset Flag
(Any combination of C.Z.S.P/V)
SETFLG tlag 7 7 1 Set Flag

(Any combination of C.Z.S.P/V)

* Privileged instructions. Executed in system mode only.

75

Extended Instructions

Clock Cycles

Function Addr. Operation
Mode NS sSs SL
Memory < EPU IR (11 +3n) (11+3n) (11+3n) "Load Memory from EPU
X (15+3n) (154+3n) (18+3n) Write n words from EPU into memory
DA (14+3n) (15+3n) (17+3n)
EPU < Memory 1R (1143n) (1143n) (11+3n) Load EPU from Memory
X (15+4+3n) (15+3n) (18+3n) Read n words from memory into EPU
DA (14+3n) (154+3n) (17+3n)
CPU « EPU Registers (11+4n) (11+4n) (11 +4n) Load VMPU from EPU

Transfer n words from EPU to VMPU
registers

EPU « CPU Registers

(11+4n) (11+4n) (11 +4n)

Load EPU from VMPU
Transfer n words from VMPU register
to EPU

Flags < EPU 15 15 15 Load FCW from EPU
Load information from EPU into flags
of the VMPU's Flag and Control Word
EPU « Flags 15 15 15 Load EPU from FCW

Transfer information from VMPU's
Flag and Control Word to EPU

EPU Internal
Operations

(11+4n) (11+4n) (11+4n)

Internal EPU Operations

VMPU treats this template as a “no-

operations”’; it is typically used to ini-
tiate an internal EPU operation. The
character is a field in the instruction.

76

Absolute Maximum Ratings

Voltages on all inputs and outputs

with respect to GND -03Vtio + 70V
Operating Ambient

Temperature 0°C to + 70°C

Storage Temperature . . —65°C to + 150°C

Stresses greater than those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is a
stress rating only; operation of the device at any condition
beyond those indicated in the operational section of this
specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

Standard Test Conditions

Standard test temperature/operating
voltage ranges are presented below. All
voltages are referenced to GND. Positive
current flows into the referenced pin.

m 0°C to+70°C,+4.75 V < Voo = +5.25V
m —40°C to+85°C, +4.75V=< Vpoc< +5.25V
8 =55°C to+125°C, +4.5V = Voo=< +5.5V

All ac parameters assume a load capacitance of 100 pF max,
except for parameter 6, which has a load capacitance of 50 pF
max. Timing reference between two output signals assume a
load difference of 50 pF max.

FROM OUTPUT
UNDER TEST

250

wv‘:[)

Figure 18. Standard Test Load

DC Characteristics

Symbol Parameter Min Max Unit Condition

Veu Clock Input High Voltage Vee—-04 Vece+0.3 v Driven by External Clock
Generator

Ver Clock Input Low Voltage -0.3 0.45 \ Driven by External Clock
Generator

Vig Input High Voltage . 2.0 Vee+0.3 v

ViL Input Low Voltage -0.3 0.8 v

Vou Output High Voltage 2.4 v lio= — 250 A

VoL Output Low Voltage 0.4 \ Io,= + 2.0mA

I Input Leakage +10 A 0.4V +24V

ToL Output Leakage +10 A 0.4 Voyt +2.4 V

Icc Vee Supply Current 300 mA

77

AC Characteristics 1

Z8003/28004 Z8003A/Z8004A Z8003B/Z8004B

(4 MHz) (6 MHz) (10 MHz)
No. Symbol Parameter Min Max Min Max Min Max
1 TeC Clock Cycle Time 250 2000 165 2000 100 2000
2 TwCh Clock Width (High) 105 2000 70 2000 40
3 TwCl Clock Width (Low) 105 2000 70 2000 40
4 TIC Clock Fall Time 20 10 10
5 TrC Clock Rise Time 20 15 10
6 TdC(SNv) Clock 1 to Segment Number Valid 130 110 70
(50 pF laod)
7 TdC(SNn) Clock 1 to Segment Number Not Valid 20 10 5
8 TdC(Bz) Clock 1 to Bus Float 65 55 40
9 TdC(A) Clock 1 to Address Valid 100 75 50
10 TdC(Az) Clock 1 to Address Float 65 55 40
11 TdA(DR) Address Valid to Read Data Required 475* 305* 180"
Valid
12 TsDR(C) Read Data to Clock | Setup Time 30 20 10
13 TdDS(A) DS 1 to Address Active 80 45 20~
14 TdC(DW) Clock 1 to Write Data Valid 100 75 50
15 ThDR(DS) Read Data to DS 1 Hold Time 0 0 50
16 TdDW(DS) Write Data Valid to DS 1 Delay 295* 195* 110*
17 TdA(MR) Address Valid to MREQ | Delay 55 35* 20*
18 TdC(MR) Clock | to MREQ | Delay 80 70 40
19 TwMRh MREQ Width (High) 210 135 80"
20 TdMR(A) MREQ | to Address Not Active 70* 35* 20*
21 TdDW(DSW) Write Data Valid to DS | (Write) Delay 55* 35* 15*
22 TdMR(DR) MREQ | to Read Data Required Valid 375* 230* 140*
23 TdC(MR) Clock | MREQ 1t Delay 80 60 45
24 TdC(ASH) Clock t to AS | Delay 80 60 40
25 TdA(AS) Address Valid to AS 1t Delay 556* 35* 20*
26 TdC(ASr) Clock | to AS 1 Delay 90 80 40
27 TdAS(DR) AS 1 to Read Data Required Valid 360" 220* 140*
28 TdDS(AS) DSt to AS { Delay 70 35* 15+
29 TwAS AS Width (Low) 85* 55* 30*
30 TdAS(A) AS 1 to Address Not Active Delay 70 45* 20*
31 TdAz(DSR) Address Float to DS (Read) | Delay 0 0 0
32 TdAS(DSR) AS 1 to DS (Read) { Delay 80* 55* 30*
33 TdDSR(DR) DS (Read) | to Read Data Required 205* 130* 70*
Valid
34 TdC(DSr) Clock | to DS 1 Delay 70 65 45
35 TdDS(DW) DS t to Write Data Not Valid 75* 45* 25*
36 TdA(DSR) Address Valid to DS (Read) | Delay 180~ 110* 65
37 TdC(DSR) Clock 1t to DS (Read) | Delay 120 85 60
38 TwDSR DS (Read) Width (Low) 275" 185~ 110*
39 TdC(DSW) Clock | to DS (Write) { Delay 95 80 60
40 TwDSW DS (Write) Width (Low) 185* 110* 75*
41 TdDSYDR) DS (I/0O) | to Read Data Required 330" 210* 120*
Valid

* Clock-cycle-time-dependent characteristics. See table on following page.
t Timings are preliminary and subject to change. Units in nanoseconds (ns).

78

AC Characteristics I (Continued)

78003/7Z8004 Z8003A/Z8004A Z8003B/Z8004B

Num- (4 MHz) (6 MHz) (10 MHz)
ber Symbol Parameter Min Max Min Max Min Max
42 TdC(DSf) Clock { to DS (I/O) | Delay 120 90 60
43 TwDS DS (I/O)_Width (Low) 410" 255* 160*

44 TdAS(DSA) AS 1T to DS (Acknowledge) | Delay 1065* 690* 410*

45 TdC(DSA) Clock T to DS (Acknowledge) | Delay 120 85 65
46 TdDSA(DR) DS (Acknowledge) | to Read Data 455* 295* 165*

Required Delay

47 TdC(S) Clock 1 to Status Valid Delay 110 85 60
48 TdS(AS) Status Valid to AS 1 Delay 50 30 10*

49 TsR(C) RESET to Clock 1 Setup Time 180 70 50

50 ThR(C) RESET to Clock 1 Hold Time 0 0 0

51 TwNMI NMI Width (Low) 100 70 50

52 TsNMI(C) NMI to Clock T Setup Time 140 70 50

53 TsVI(C) VI, NVI to Clock 1 Setup Time 110 50 40

54 ThVI(C) VI, NVI to Clock t Hold Time 20 20 10

55 TsSGT(C) SAT to Clock 1 Setup Time 70 55 40

56 ThSGT(C) SAT to Clock 1 Hold Time 0 0 0

57 TsMICQC) MI to Clock 1 Setup Time 180 110 80

58 ThMI(C) MI to Clock 1 Hold Time 0 0 0

59 TdC(MQO) Clock t to MO Delay 120 85 70
60 TsSTP(C) STOP to Clock { Setup Time 140 80 50

61 ThSTP(C) STOP to Clock { Hold Time 0 0 0

62 TsW(C) WAIT to Clock | Setup Time 50 30 20

63 ThW(C) WAIT to Clock | Hold Time 10 10 5

64 TsBRO(C) BUSREQ to Clock 1 Setup Time 90 80 60

65 ThBROQ(C) BUSREQ to Clock 1 Hold Time 10 10 5

66 TdC(BAKr) Clock T to BUSACK 1 Delay 100 75 60
67 TdC(BAK{f) Clock 1 to BUSACK | Delay 100 75 60
68 TwA Address Valid Width 150~ 95~ 50~

69 TdDS(S) DS 1 to STATUS Not Valid 80* 55* 30*

70 TsABT(C) ABORT | to Clock 1 Setup Time 50 30 25

71 ThABT(C) ABORT | to Clock | Hold Time 0 0 0

* Clock-cycle-time-dependent characteristics. See table on following page.
t Timings are preliminary and subject to change. Units in nanoseconds (ns).

79

Composite AC Timing Diagram

RESET

Vi, Wi

SAT

8l

sTOP

WAIT

susaea

BUSA

cLock ’

éTz

SNo-SNe

N4
|

ADo~AD+s

NORMALI/SYSTEM,

ADDRESS

DATA IN

DATA OUT

¥

5,
||

[}

1

3 v-\'t;k
|

MEMORY READ _/

7

MEMORY WRITE

o+

INPUT/IOUTPUT _/

-—hﬂ Ko \é 7 @

INTERRUPT _/
ACKNOWLEDGE

N

@~

[T

7l

ST,-ST,,
READIWAITE

BYTE/WORD

80

Clock-Cycle-Time-Dependent Characteristics

78003 Z8003A Z8003B
Number Symbol Equation Equation Equation
11 TdA(DR) 2TcC + TwCh - 130 ns 2TcC + TwCh —95 ns 2TcC + TwCh-60 ns
13 TdDS(A) TwCl-25 ns TwCl-25 ns TwCl-20 ns
16 TdDW(DS) TeC + TwCh—-60 ns TcC+ TwCh —40 ns TcC+TwCh-30 ns
17 TdA(MR) TwCh—50 ns TwCh -35 ns TwCh —20 ns
19 TwMRh TcC—40 ns TcC-30 ns TcC-20 ns
20 TdMR(A) TwCl-35 ns TwCl—35 ns TwCl-20 ns
21 TdDW(DSW) TwCh -50 ns TwCh—35 ns TwCh-25 ns
22 TdMR(DR) 2TcC—130 ns 2TcC - 100 ns 2TcC - 60 ns
25 TdA(AS) TwCh —50 ns TwCh-35 ns TwCh-20 ns
27 TdAS(DR) 2TcC - 140 ns 2TcC—110 ns 2TcC—-60 ns
28 TdDS(AS) TwCl-35 ns TwCl-35 ns TwCl-25 ns
29 TwAS TwCh - 20ns TwCh—15 ns TwCh-10 ns
30 TdAS(A) TwCl-35 ns TwCl-25 ns TwCl1-20 ns
32 TdAS(DSR) TwCl—-25 ns TwCl—15 ns TwCl~10 ns
33 TdDSR(DR) TcC + TwCh—-150 ns TcC+TwCh~ 105 ns TcC+TwCh—-70 ns
35 TdDS(DW) TwCl-30 ns TwCl-25 ns TwCl-15 ns
36 TdA(DSR) TcC~70 ns TcC -55 ns TcC -35 ns
38 TwDSR TcC+TwCh—80 ns TcC + TwCh —50 ns TcC+ TwCh-30 ns
40 TwDSW TcC—65 ns TcC—-55 ns TcC—-25 ns
4] TdDSI(DR) 2TcC—-170 ns 2TcC 120 ns 2TcC ~80 ns
43 TwDS 2TcC-90 ns 2TeC—-175 ns 2TcC —40 ns
44 TdAS(DSA) 4TcC + TwCl - 40 ns 4TcC + TwCl —40 ns 4TcC + TwCl-30 ns
46 TdDSA(DR) 2TcC + TwCh - 150 ns 2TcC + TwCh — 105 ns 2TcC +TwCh—75 ns
48 TdS(AS) TwCh—55 ns TwCh—40 ns TwCh—-30 ns
68 TwA TcC-90 ns TcC—-70 ns TcC~50 ns
69 TdDS(S) TwCl—25 ns TwCl-15 ns TwCl—10 ns

81

Ordering Information

Type Package Temp. Clock Description
78003 Bl Plastic 48 pin 0/+70°C 28003 Virtual Memory

B6 Plastic 48 pin —-40/+85°C Processing Unit
D1l Ceramic 48 pin 0/+170°C 4 MHz
D2 Ceramic 48 pin —85/+125°C
D6 Ceramic 48 pin —40/+ 85°C

Z8003A Bl Plastic 48 pin 0/+70°C
B6 Plastic 48 pin — 40/ +85°C 6 MHz
D1 Ceramic 48 pin 0/+170°C
D6 Ceramic 48 pin — 40/ +85°C

78003B Bl Plastic 48 pin 0/+70°C
B6 Plastic 48 pin —40/+85°C
DI Ceramic 48 pin 0/+70°C 10 MHz
D6 Ceramic 48 pin —40/+85°C

78004 Bl Plastic 40 pin 0/+70°C 78004 Virtual Memory

B6 Plastic 40 pin - 40/ +85°C Processing Unit
D1 Ceramic 40 pin 0/ +70°C 4 MHz
D2 Ceramic 40 pin —55/+125°C
D6 Ceramic 40 pin —40/+85°C

Z8004A Bl Plastic 40 pin 0/+70°C
B6 Plastic 40 pin —40/+85°C 6 MH
D1 Ceramic 40 pin 0/ +70°C z
D6 Ceramic 40 pin —40/+85°C

7Z8004B Bl Plastic 40 pin 0/+70°C
B6 Plastic 40 pin —40/+85°C
D1 Ceramic 40 pin 0/+170°C } 10 MH.
D6 Ceramic 40 pin —40/+85°C

82

Packages (dimensions in mm)
Plastic

28003

8 25
DAAANNAANANNNANANAANANASAADA

=

B
3

iy
VYV UVV UV UV VYV UVUUU VYV Y
! 6273__ x
MAX
Ceramic
28003
|
AN
&
us] 102 ™
. Y B
6155m
- 6159 S
128 '
S T
@
b
i

XA
Q25

15.24

P985 8

83

