WESTCODE

Date: November, 2000 Data Sheet: 99T03

Issue: 3

Provisional Data

Phase Control Thyristor

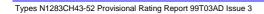
Types N1283CH43 to N1283CH52

Absolute maximum ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage (note 1)	4300-5200	V
V_{DSM}	Non-repetitive peak off-state voltage (note 1)	4300-5200	V
V_{RRM}	Repetitive peak reverse voltage (note 1)	4300-5200	V
V_{RSM}	Non-repetitive peak reverse voltage (note 1)	4400-5300	V

	RATINGS	MAXIMUM LIMITS	UNITS
$I_{T(AV)}$	Mean on-state current, T _{sink} =55°C (note 2)	3764	Α
$I_{T(AV)}$	Mean on-state current. T _{sink} =85°C (note 2)	2658	Α
$I_{T(AV)}$	Mean on-state current. T _{sink} =85°C (note 3)	1680	Α
I _{T(RMS)}	Nominal RMS on-state current, T _{sink} =25 °C (note 2)	7317	Α
I _{T(d.c.)}	D.C. on-state current, T _{sink} =25°C (note 4)	6620	Α
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} (note 5)	49.5	kA
I _{TSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V (note 5)	55	kA
l ² t	I^2 t capacity for fusing $t_p=10$ ms, $V_{RM}=0.4V_{RRM}$ (note 5)	12.25x10 ⁶	A^2s
l ² t	I ² t capacity for fusing t _p =10ms, V _{RM} ≤10V (note 5)	15.13x10 ⁶	A ² s
al:/al#	Critical rate of rise of on-state current, repetitive (note 6)	150	A/µs
di/dt	Critical rate of rise of on-state current, non-repetitive (note 6)	300	A/µs
I _{FGM}	Peak forward gate current	10	А
V_{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	5	W
P _{GM}	Peak forward gate power	30	W
V_{GD}	Non-trigger gate voltage (Note 7)	0.25	V
T _{HS}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:-


- 1) De-rating factor of 0.13% per C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- Double side cooled.
- 5) Half-sinewave, 125°C T_i initial.
- 6) $V_D = 67\% V_{DRM}$, $I_T = 5000 A$, $I_{FG} = 2A$, $t_r = 500 ns$.
- 7) Rated Vorm.

Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	2.00	I _T =5000A	√ ∨
V_0	Threshold voltage	-	-	1.0		V
rs	Slope resistance	-	-	0.2		mΩ
dv/dt	Critical rate of rise of off-state voltage	200	1000	2000	V _D =80% V _{DRM}	V/μs
I _{DRM}	Peak off-state current	-	-	300	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	300	Rated V _{RBM} / /	mA
V _{GT}	Gate trigger voltage	-	-	3.0	T _j =25°C	V
I _{GT}	Gate trigger current	-	-	300	T _j =25°C V _D =10V, I _A =3A	mA
lΗ	Holding current	-	-	1000	T _j =25°C	mA
D		-	- <	0.0065	DC, Double side cooled	14004
R _{th(j-hs)}	Thermal resistance, junction to sink	-	-	0.013	DC, Single side cooled	K/W
F	Mounting force	81	-	98		kN
W_t	Weight	-	2.80	-		kg

Notes:- 1) Unless otherwise indicated T_j =125°C.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{DSM} V _{DRM} V _{RRM} V	V _{RSM} V	V _D V _R (dc)
44	4400	4500	2200
46	4600	4700	2300
48	4800	4900	2400
50	5000	5100	2500
52	5200	5300	} / () 2 600

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13% per °C is applicable to this device for T_i below 25°C.

4.0 Repetitive dv/dt

Higher dv/dt selections are available up to 2000V/µs on request

5.0 Computer Modelling Parameters

5.1 Device dissipation calculations

$$I_{AV} = \frac{-V_o + \sqrt{V_o^2 + 4 \cdot ff^2 \cdot r_s \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_s}$$

Where $V_0 = 1.0$ V, $r_s = 0.2$ m Ω

$$W_{AV} = \frac{\Delta T}{R_{th}}$$
 $\Delta T = T_{jMax} - T_{Hs}$

 $R_{\it th}$ = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance (at 50Hz operating frequency)							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.00717	0.00707	0.00698	0.00689	0.00673	0.00652	0.0065
Square wave Single Side Cooled	0.0137	0.01359	0.01349	0.0134	0.01323	0.01301	0.013
Sine wave Double Side Cooled	0.00709	0.00697	0.00687	0.00678	0.00654		
Sine wave Single Side Cooled	0.0136	0.01348	0.01337	0.01328	0.01303		

		F	orm Factors	3			
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

5.2 Calculating V_T using ABCD coefficients

The on-state characteristic I_T vs. V_T, on Fig. 9, is represented in two ways;

- (i) the well established V_0 and r_S tangent and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B.\ln(I_T) + C.I_T + D.\sqrt{I_T}$$

The constants, derived by curve fitting software, are given in this report for both hot and cold characteristics where possible. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

125°C C	pefficients	25°C Co	efficients
Α	0.545447122	A	/ /0.8560119
В	0.06095875	В	0.06109782
С	1.872716×10 ⁻⁴	C	/ 1.922791×10 ⁻⁴
D	-1.417852×10 ⁻⁵	D	-4.777063×10 ⁻³

5.3 D.C. Thermal impedance calculation

$$r_t = \sum_{p=1}^{p=n} r_p \left(\frac{-t}{e^{\tau_p}} \right)$$

Where p = 1 to n, n is the number of terms in the series. where:

t = Duration of heating pulse in seconds.

r₊ = Thermal resistance at time t₊

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

D.C. Double Side Cooled							
Term	Term \ \ 1						
r _p /	3.424745×10 ⁻³	1.745273×10 ⁻³	8.532017×10 ⁻⁴	3.457329×10 ⁻⁴			
τ_{ρ} 1.125391 0.1878348 0.02788979 8.430889×10 ⁻³							

D.C. Single Side Cooled								
(Term	Term 1 2 3 4							
\tag{\kappa}	/ 8.375269×10 ⁻³	2.518437×10 ⁻³	1.193758×10 ⁻³	7.45432×10 ⁻⁴				
$ au_p$	8.929845	0.4711304	0.08221244	0.01221961				

Curves

Figure 1 – Maximum on-state characteristic



Figure 2 - Transient thermal impedance N1283CH43-52 99T03AD Issue 3 Q.013K/W 0.01 Transient thermal impedance (K/W) 0.0065K/W 0.001 0.0001 0.00001

0.01

0.1

Time (s)

10

Figure 3 - Gate characteristics

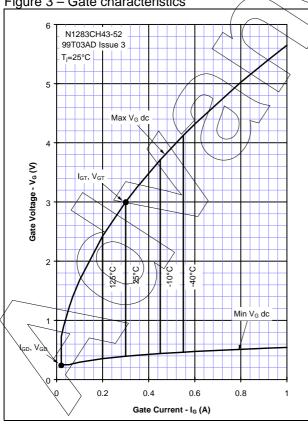


Figure 4 – Gate characteristics

1E-05 0.0001 0.001

Q.000001

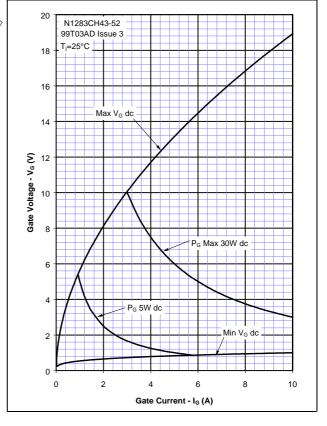


Figure 5 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

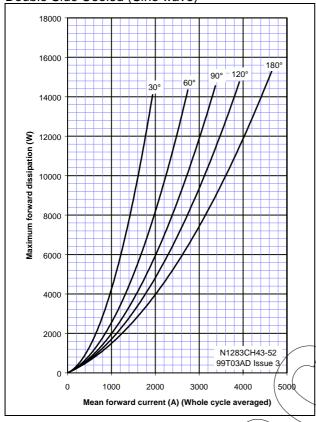


Figure 6 – On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

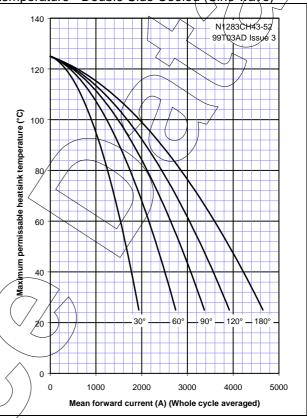


Figure 7 – On-state current vs. Power dissipation

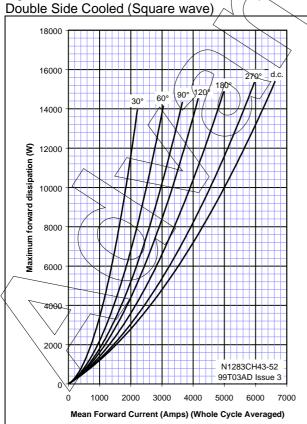


Figure 8 – On-state current vs. Heatsink temperature - Double Side Cooled (Square wave)

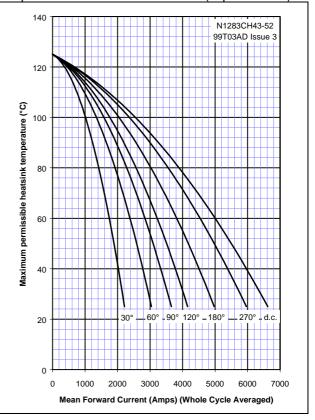


Figure 9 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

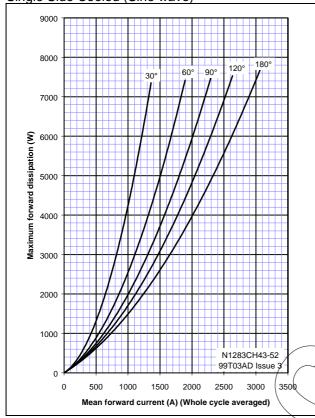


Figure 10 – On-state current vs. Heatsink temperature - Single Side Cooled (Sine/wave)

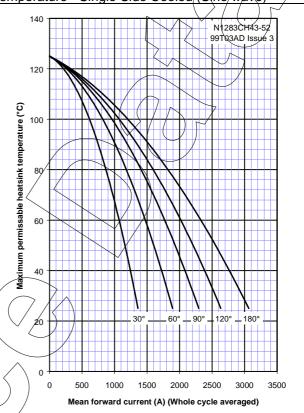


Figure 11 – On-state current vs. Power dissipation – Single Side Cooled (Square wave)

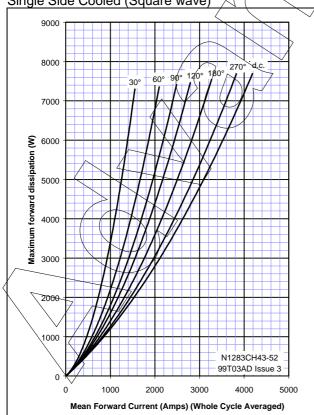
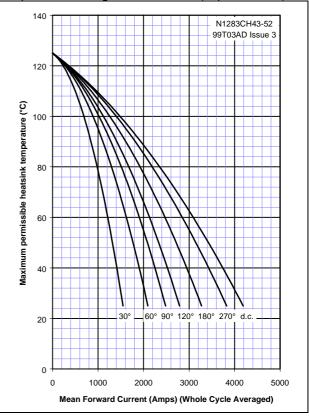
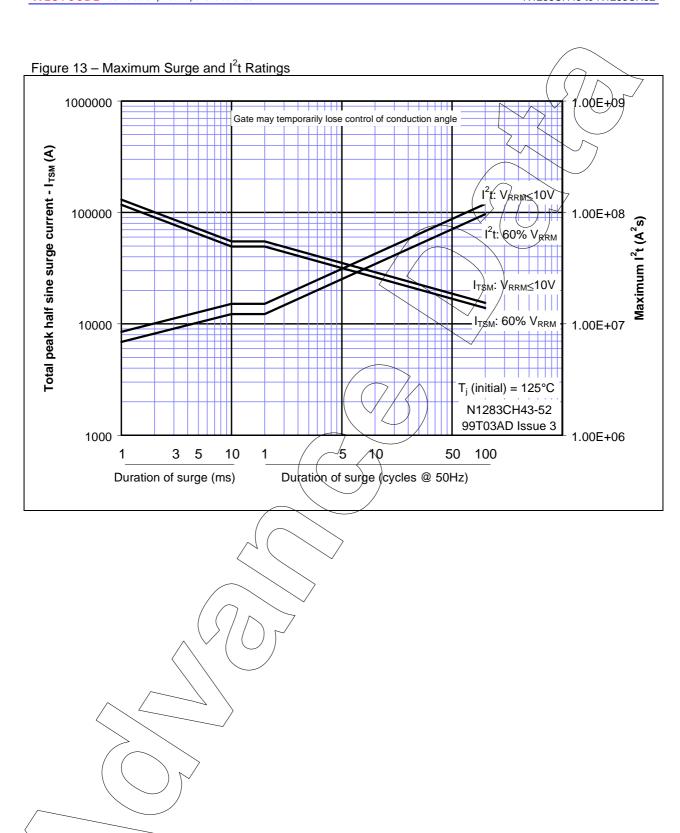





Figure 12 – On-state current vs. Heatsink temperature - Single Side Cooled (Square wave)

Outline drawing & ordering information

Typical order code: N12836H50K00 - 5kV V_{DRM}, 750V/µs critical dv/dt, 36.5mm clamp height capsule

UK: Westcode Semiconductors Ltd.
P.O. Box 57, Chippenham, Wiltshire, England. SN15 1JL.
Tel: +44 (0) 1249 444524 Fax: +44 (0) 1249 659448
E-Mail: WSL.sales@westcode.com

USA: Westcode Semiconductors Inc. 3270 Cherry Avenue, Long Beach, California 90807 Tel: 562 595 6971 Fax: 562 595 8182 E-Mail: WSI.sales@westcode.com

Internet: http://www.westcode.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors Westcode Semiconductors Ltd.

©Westcode Semiconductors Ltd

In the interest of product improvement, Westcode reserves the right to change specifications at any time without prior notice.

Devices with a suffix code (2-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.