

6 - 18 GHz High Power Amplifier

TGA9092-SCC

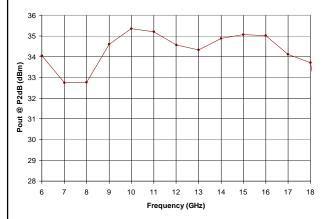
Chip Dimensions 5.739 mm x 4.318 mm x 0.1016 mm

Product Description

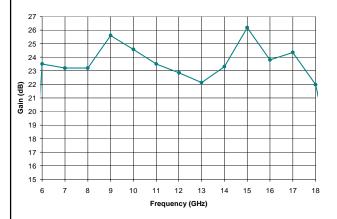
The TriQuint TGA9092-SCC is a dual channel, three-stage wide band HPA MMIC designed using TriQuint's proven 0.25 μm Power pHEMT process to support a variety of high performance applications including military EW programs, VSAT, and other applications requiring wideband high power performance.

Each amplifier channel consists of one 1200 μm input device driving a 2400 μm intermediate stage which drives a 4800 um output stage.

The TGA9092-SCC provides a nominal 34 dBm of output power at 2dB gain compression across the 6-18 GHz range per channel . Power combined, nominal output power of 36.5 dBm can be expected with low loss external couplers. Typical per channel small signal gain is 24 dB. Typical single-ended Input/Output RL is 6-8 dB across the band.


The TGA9092-SCC is 100% DC and RF tested onwafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance


- Dual Channel Power Amplifier
- 0.25um pHEMT Technology
- 6-18 GHz Frequency Range
- 2.8 W/Channel Midband Pout
- 5.6 W Pout Combined
- 24 dB Nominal Gain
- Balanced In/Out for Low VSWR
- 8V @ 1.2A per Channel Bias

Primary Applications

- X-Ku band High Power
- VSAT

Typical Measured Pout (RF Probe)

Typical Measured Small Signal Gain

TGA9092-SCC

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>5</u> /	Value	Notes
V^{+}	Positive Supply Voltage	9 V	<u>4</u> /
V ⁻	Negative Supply Voltage Range	-5V TO 0V	
I^+	Positive Supply Current (Quiescent)	3.5 A	<u>4/</u>
$ I_G $	Gate Supply Current	84.48 mA	
P_{IN}	Input Continuous Wave Power	26 dBm	<u>4/</u>
P_D	Power Dissipation	28.8 W	<u>3</u> / <u>4/</u>
T_{CH}	Operating Channel Temperature	150 °C	<u>1</u> / <u>2</u> /
T_{M}	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 ⁰ C	

- 1/ These ratings apply to each individual FET.
- $\underline{2}$ / Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{3}$ / When operated at this bias condition with a base plate temperature of 70 0 C, the median life is reduced from 1.6 E+6 to 5.4 E+4 hours.
- $\underline{4}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 5/ These ratings represent the maximum operable values for this two-channel device.

TGA9092-SCC

TABLE II DC PROBE TEST (TA = 25 °C \pm 5 °C)

Symbol	Parameter	Minimum	Maximum	Unit
Imax _(Q1)	Maximum Current	400	800	mA
Gm (Q1)	Transconductance	200	600	mS
V _P	Pinch-off Voltage	-1.5	-0.5	V
BVGS	Breakdown Voltage Gate- Source	-30	-13	V
BVGD	Breakdown Voltage Gate- Drain	-30	-13	V

TABLE III AUTOPROBE FET PARAMETER MEASUREMENT CONDITONS

FET Parameters	Test Conditions
G_m : Transconductance; $\frac{\left(I_{DSS} - IDS 1\right)}{VG1}$	For all material types, V_{DS} is swept between 0.5 V and VDSP in search of the maximum value of I_{ds} . This maximum I_{DS} is recorded as IDS1. For Intermediate and Power material, IDS1 is measured at $V_{GS} = VG1 = -0.5$ V. For Low Noise, HFET and pHEMT material, $V_{GS} = VG1 = -0.25$ V. For LNBECOLC, use $V_{GS} = VG1 = -0.10$ V.
V_P : Pinch-Off Voltage; V_{GS} for $I_{DS}=0.5\ mA/mm$ of gate width.	V_{DS} fixed at 2.0 V, V_{GS} is swept to bring I_{DS} to 0.5 mA/mm.
V_{BVGD} : Breakdown Voltage, Gate-to-Drain; gate-to-drain breakdown current ($I_{BD})=1.0~\text{mA/mm}$ of gate width.	Drain fixed at ground, source not connected (floating), 1.0 mA/mm forced into gate, gate-to-drain voltage ($V_{\rm GD}$) measured is $V_{\rm BDGD}$ and recorded as BVGD; this cannot be measured if there are other DC connections between gate-drain, gate-source or drain-source.
V_{BVGS} : Breakdown Voltage, Gate-to-Source; gate-to-source breakdown current (I_{BS}) = 1.0 mA/mm of gate width.	Source fixed at ground, drain not connected (floating), 1.0 mA/mm forced into gate, gate-to-source voltage (V_{GS}) measured is V_{BDGS} and recorded as BVGS; this cannot be measured if there are other DC connections between gate-drain, gate-source or drain-source.
I _{MAX} : Maximum I _{DS} .	Positive voltage is applied to the gate to saturate the device. V_{DS} is stepped between 0.5 V up to a maximum of 3.5 V, searching for the maximum value of I_{DS} .

TGA9092-SCC

TABLE IV RF WAFER CHARACTERIZATION TEST*

 $(T_A = 25^{\circ}C \pm 5^{\circ}C)$ (Vd = 8V, Id = 1.2A ±5%)

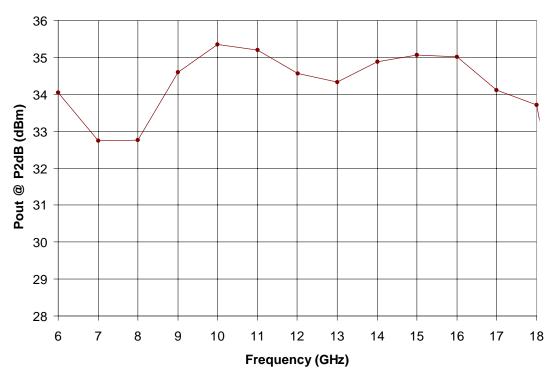
Parameter	Test Condition	Limit		Units	
		Min	Nom	Max	
Small-signal	F = 6 to 17 GHz	20	24	-	dB
Power Gain	F = 18 GHz	18			
Input Return Loss	F = 6 to 18 GHz		6		dB
Output Return Loss	F = 6 to 18 GHz		8		dB
Output Power	F = 6 to 8 GHz	32	34.5	-	dBm
@ 2dB gain	F = 9 to 18 GHz	32.5		-	
compression					
Power Added	F = 6 to 18 GHz	12	25	-	%
Efficiency					

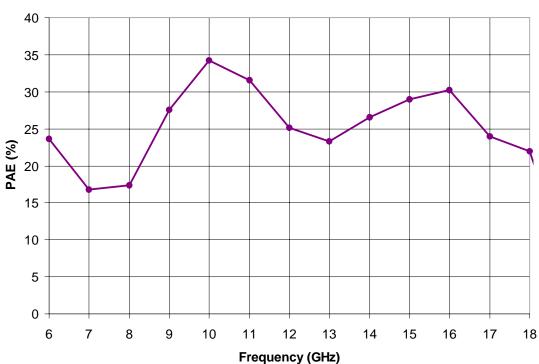
Note: RF probe data taken at 1 GHz steps

TABLE V
THERMAL INFORMATION*

Parameter	Test Conditions	T _{CH} (°C)	R _{0JC} (°C/W)	T _M (HRS)
$R_{ heta JC}$ Thermal Resistance (channel to backside of carrier)	$Vd = 8 V$ $I_D = 2.4 A$ $Pdiss = 19.2 W$	144.56	3.88	1.6 E+6

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

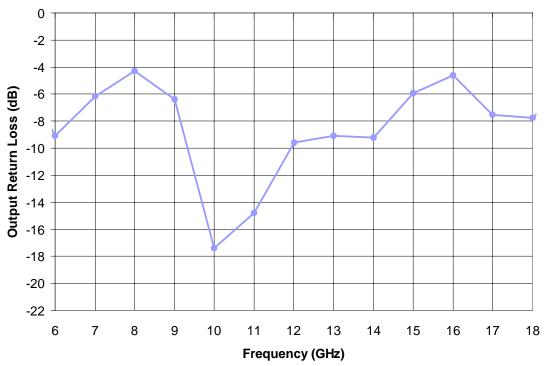

* This information is a result of a thermal model analysis based on the entire two-channel device.


^{*} This information is based on the per-channel device.

TGA9092-SCC

Data Based on the 50th Percentile On-Wafer RF Probe Test Results, Sample Size = 3370 Devices

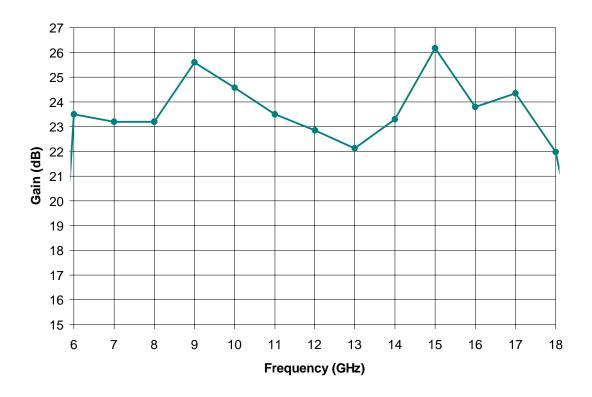
Bias Conditions: Vd = 8 V, Id = 1.2 A



TGA9092-SCC

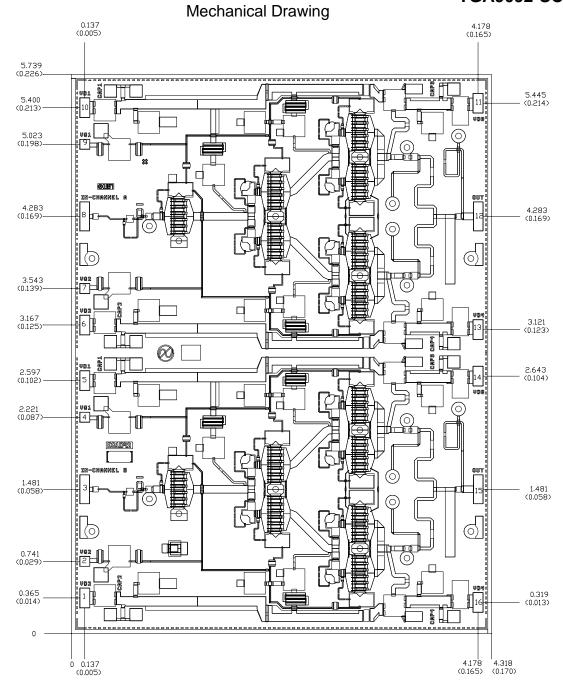
Data Based on the 50th Percentile On-Wafer RF Probe Test Results, Sample Size = 3370 Devices

Bias Conditions: Vd = 8 V, Id = 1.2 A



TGA9092-SCC

Data Based on the 50th Percentile On-Wafer RF Probe Test Results, Sample Size = 3370 Devices

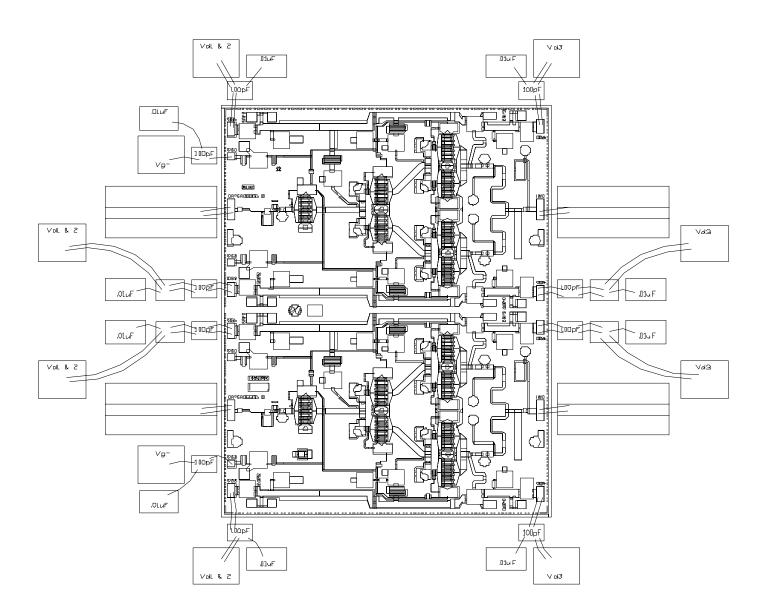

Bias Conditions: Vd = 8 V, Id = 1.2 A

TGA9092-SCC

Units: millimeters (inches) Thickness: 0.1016 (0.004) (reference only)

Chip edge to bond pad dimensions are shown to center of Bond pads. Chip size tolerance: +/- 0.0508 (0.002)

Bond Pad	#1,5,6,10 (Vd1&Vd2)	0.100×0.200	(0.004×0.008)
Bond Pad	#11,13,14,16 (Vd3)	0.100×0.200	(0.004×0.008)
Bond Pad	#2,4,7,9 (Vg)	0.100×0.100	(0.004×0.004)
Bond Pad	#3,8 (RF Input)	0.100×0.300	(0.004×0.012)
Rond Pad	#12.15 (RF Dutnut)	0.100×0.300	(0.004×0.012)



TGA9092-SCC

Chip Assembly and Bonding Diagram

TriQuint © SEMICONDUCTOR®

Note: All Vd's may be connected external to the MMIC.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

TGA9092-SCC

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.