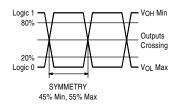


Voltage Controlled Crystal Oscillator

PECL

Technical Data S1550 Series


Description

A voltage controlled crystal oscillator designed primarily for use in phase locked loops, phase shift keying, ATM, SDH and network/switch applications. Output is Motorola 10KH compatible. Device is packaged in a 14-pin DIP compatible, resistance welded package. Case is grounded to Pin 7 to reduce EMI.

Applications & Features

- Positive supply voltage ECL (PECL)
- ~ Complementary outputs
- Wide frequency range from 38.88 MHz to 155.52 MHz using SaRonix fundamental crystals for exceptional jitter performance
- ±50 or ±100 ppm minimum APR*
- Covers wide range of telecommunication applications
- Other features such as enable/disable and negative supply are available in this series, consult factory

Output Waveforms

Frequency Range: 38.88 MHz to 155.52 MHz Frequency Stability: ± 20 , ± 25 , ± 50 , or ± 100 ppm over all conditions: operating temperature, supply voltage change, load change, calibration tolerance, shock and vibration. Aging @ 25°C: ±3ppm max per year, ±7ppm max over 10 years Temperature Range: Operating: 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C -55°C to +125°C Storage: Supply Voltage (VCC): +5.0V ±5% **Supply Current:** 70mA typ, 100mA max **Output Drive:** Symmetry: 45/55% max @ outputs crossing 1.2ns T_{r} max & 1.7ns T_{f} max, 20% to 80% of output waveform Rise & Fall Times: Logic 0: VCC -1.60 max Logic 1: VCC -1.02 min 50Ω to V_{CC} -2V (all outputs require termination) Load: 3.5ps max RMS period jitter Jitter: **Pull Characteristics:** Input Impedence (Pin 1): $50K\Omega$ min Frequency Response (-3dB): 10 kHz min Pullability: $\pm 50 \text{ or } \pm 100 \text{ ppm min APR*} (V_C = +2.5 \pm 2V)$ Control Voltage: +0.5V to +4.5V Linearity: 10% max Transfer Function: Frequency increases when control voltage increases Mechanical: Shock: MIL-STD-202, Method 213, Condition F Solderability: MIL-STD-883, Method 2003

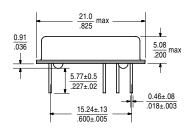
Solderability: MIL-STD-202, Method 213, Condition F
Solderability: MIL-STD-883, Method 2003

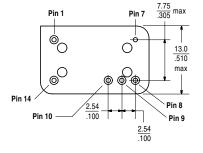
Terminal Strength: MIL-STD-202, Method 211, Conditions A & C
Vibration: MIL-STD-202, Method 207, Condition A
MIL-STD-202, Method 210, Condition A & C
MIL-STD-202, Method 210, Condition A, B or C
(I or J for Gull-wing)

Environmental:

Gross Leak Test: MIL-STD-883, Method 1014, Condition C
Fine Leak Test: MIL-STD-883, Method 1014, Condition A2
Thermal Shock: MIL-STD-883, Method 1011, Condition A
Moisture Resistance: MIL-STD-883, Method 1004

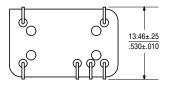
* APR = (VCXO Pull relative to specified Output Frequency) - (VCXO Frequency Stability)




Voltage Controlled Crystal Oscillator

PECL

Technical Data S1550 Series

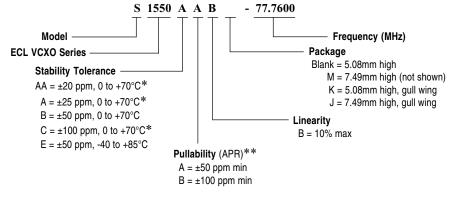

Package Details

Gull Wing Package

Pin Functions:

Pin 1: Control Voltage Pin 7: GND / Case Pin 8: Q Output Pin 9: \overline{Q} Output Pin 10: N/C Pin 14: Supply Voltage

Marking Format **


Includes Date Code, Frequency & Model

**Exact location of items may vary

Scale: None (Dimensions in $\frac{mm}{inches}$)

Part Numbering Guide

- * A pullability only
- ** APR = (VCXO Pull relative to specified Output Frequency) (VCXO Frequency Stability)

Test Circuit

All specifications are subject to change without notice.

DS-157 REV C

5.6