

PCS5P23Z05A/09A

rev 0.1

Low Frequency Timing-Safe™ Peak EMI reduction IC

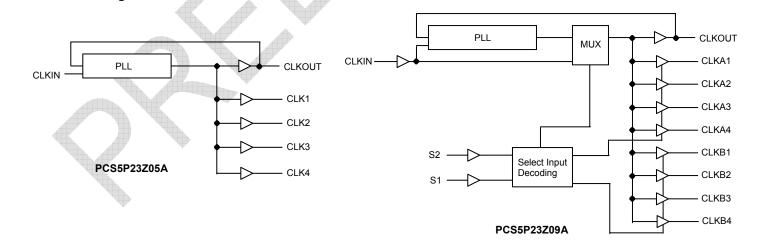
General Features

- Low Frequency Clock Distribution with Timing-Safe[™] Peak EMI Reduction
- Input frequency range: 4MHz 20MHz
- Zero input output propagation delay
- Low-skew outputs
 - Output-output skew less than 250pS
 - Device-device skew less than 700pS
- Less than 200pS Cycle-to-cycle jitter
- Available in 16pin, 150mil SOIC, 4.4mm TSSOP (PCS5P23Z09A), and in 8pin, 150 mil SOIC, 4.4mm TSSOP Packages (PCS5P23Z05A).
- 3.3V Operation
- Industrial temperature range
- Advanced 0.35µ CMOS technology
- The First True Drop-in Solution

available in a 16 pin Package. The PCS5P23Z05A is the eight-pin version and accepts one reference input and drives out five low-skew clocks.

All parts have on-chip PLLs that lock to an input clock on the XIN/CLKIN pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad, internal to the device.

Multiple PCS5P23Z05/09A devices can accept the same input clock and distribute it. In this case, the skew between the outputs of the two devices is guaranteed to be less than 700pS.


All outputs have less than 200pS of Cycle-to-cycle jitter. The input and output propagation delay is guaranteed to be less than 350pS, and the output-to-output skew is guaranteed to be less than 250pS.

Functional Description

Block Diagram

PCS5P23Z05A/09A is a versatile, 3.3V Zero-delay buffer designed to distribute low frequency Timing-Safe™ clocks with Peak EMI Reduction. PCS5P23Z09A accepts one reference input and drives out nine low-skew clocks. It is

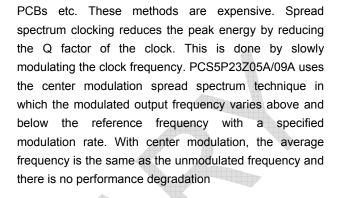
Please refer "Differential Cycle Slips and Spread Spectrum Control Table" for deviations and differential Cycle Slips for PCS5P23Z05A and PCS5P23Z09A devices

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com

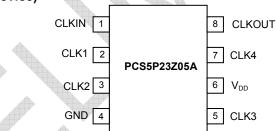
Notice: The information in this document is subject to change without notice.

PCS5P23Z05A/09A

rev 0.1


Spread Spectrum Frequency Generation

The clocks in digital systems are typically square waves with a 50% duty cycle and as frequencies increase the edge rates also get faster. Analysis shows that a square wave is composed of fundamental frequency and harmonics. The fundamental frequency and harmonics generate the energy peaks that become the source of EMI. Regulatory agencies test electronic equipment by measuring the amount of peak energy radiated from the equipment. In fact, the peak level allowed decreases as the frequency increases. The standard methods of reducing EMI are to use shielding, filtering, multi-layer


Cycle Slip

Cycle slip occurs when the output clock edge 'wanders' away from the corresponding input clock edge. There are two types of cycle slips – a Differential cycle slip and an Integral cycle slip. The differential cycle slip is caused due the clock edge variation over one modulation cycle. It is defined by the maximum amount of 'wander' the clock edge will have within one

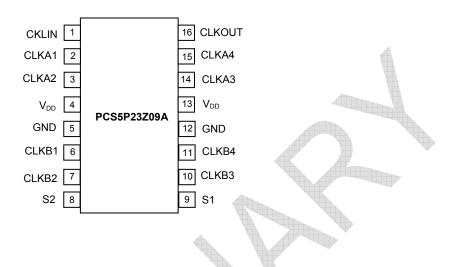
Pin Configuration (8 Pin Device)

modulation cycle. Integral cycle slip occurs due to the accumulation of the cycle slip over successive modulation cycles. In PCS5P23Z05A/09A the differential cycle slip is within the value mentioned in the "Differential Cycle Slips and Spread Spectrum Control Table" and the Integral Cycle Slip is 'Zero'.

Pin Description for PCS5P23Z05A

Pin #	Pin Name	Description
	CLKIN	Input reference frequency, 5V tolerant input
2	CLK1 ¹	Buffered clock output
3	CLK2 ¹	Buffered clock output
4	GND	Ground
5	CLK3 ¹	Buffered clock output
6	V _{DD}	3.3V supply
7	CLK4 ¹	Buffered clock output
8	CLKOUT ¹	Buffered clock output, internal feedback on this pin

Notes: 1. Weak pull-down on all outputs. 2. Buffered clock outputs are Timing-Safe™



March 2007

Giving you the edge

rev 0.1

Pin Configuration (16 Pin Device)

Pin Description for PCS5P23Z09A

Pin #	Pin Name	Description
1	CLKIN	Input reference frequency, 5V tolerant input
2	CLKA1 ¹	Buffered clock output, bank A
3	CLKA2 ¹	Buffered clock output, bank A
4	V _{DD}	3.3V supply
5	GND	Ground
6	CLKB1 ¹	Buffered clock output, bank B
7	CLKB2 ¹	Buffered clock output, bank B
8	S2 ²	Select input, bit 2
9	S1 ²	Select input, bit 1
10	CLKB3 ¹	Buffered clock output, bank B
11	CLKB4 ¹	Buffered clock output, bank B
12	GND	Ground
13	V _{DD}	3.3V supply
14	CLKA3 ¹	Buffered clock output, bank A
15	CLKA4 ¹	Buffered clock output, bank A
16	CLKOUT ¹	Buffered clock output, internal feedback on this pin

Notes: 1. Weak pull-down on all outputs.

Weak pull-up on these Inputs.
Buffered clock outputs are Timing-Safe™

PCS5P23Z05A/09A

Giving you the edge

rev 0.1

Select Input Decoding for PCS5P23Z09A

S2	S1	Clock A1 - A4	Clock B1 - B4	CLKOUT ¹	Output Source	PLLShut-Down
0	0	Three-state	Three-state	Driven	PLL	Ν
0	1	Driven	Three-state	Driven	PLL	Ν
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	Ν

Notes:

1. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and the output.

Differential Cycle Slips and Spread Spectrum Control Table

Device	Input Frequency	SS %	Deviation	Differential Cycle Slips (Nd)
PCS5P23Z05A/09A		0	±0.25 %	0.063
	12MHz	1	±0.50 %	0.125

Absolute Maximum Ratings

6 V
5 °C
°C
°C
KV
s

Operating Conditions for PCS5P23Z05A/09A Devices

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
TA	Operating Temperature (Ambient Temperature)	-40	+85	°C
CL	Load Capacitance		30	pF
C _{IN}	Input Capacitance		7	рF

PCS5P23Z05A/09A

Giving you the edge

rev 0.1

Electrical Characteristics for PCS5P23Z05A/09A

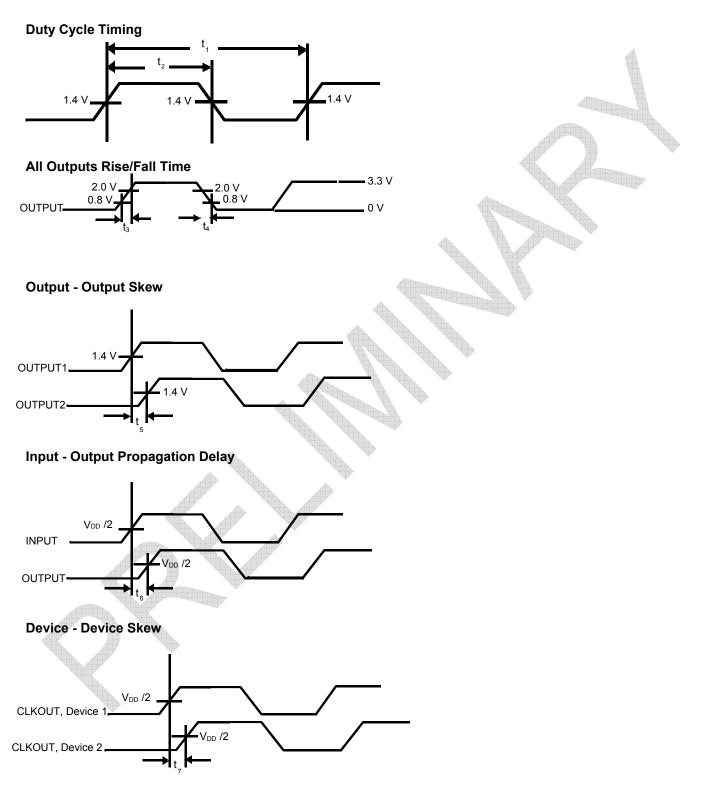
Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input LOW Voltage ¹				0.8	V
V _{IH}	Input HIGH Voltage ¹		2.0			V
IIL	Input LOW Current	V _{IN} = 0V			50	μA
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			100	μA
V _{OL}	Output LOW Voltage ²	I _{OL} = 8mA			0.4	v
V _{OH}	Output HIGH Voltage ²	I _{ОН} = -8mA	2.4			V
I _{DD}	Supply Current	Unloaded outputs		TBD		mA
Zo	Output Impedance			23		Ω

Note: 1. REF input has a threshold voltage of $V_{DD}/2$

2. Parameter is guaranteed by design and characterization. Not 100% tested in production

Switching Characteristics for PCS5P23Z05A/09A¹

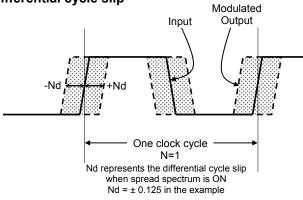
Parameter	Description	Test Conditions	Min	Тур	Max	Unit
1/t1	Output Frequency	30pF load	4		20	MHz
	Duty Cycle 2 = (t ₂ / t ₁) * 100	Measured at V _{DD} /2	40	50	60	%
t ₃	Output Rise Time ²	Measured between 0.8V and 2.0V			2.5	nS
t4	Output Fall Time ²	Measured between 2.0V and 0.8V			2.5	nS
t ₅	Output-to-output skew ²	All outputs equally loaded			250	pS
t ₆	Delay, REF Rising Edge to CLKOUT Rising Edge ²	Measured at V_{DD} /2			±350	pS
t7	Device-to-Device Skew ²	Measured at $V_{DD}/2$ on the CLKOUT pins of the device			700	pS
tJ	Cycle-to-cycle jitter ²	Loaded outputs			200	pS
t _{LOCK}	PLL Lock Time ²	Stable power supply, valid clock presented on REF pin			1.0	mS


Note: 1. All parameters specified with loaded outputs. 2. Parameter is guaranteed by design and characterization. Not 100% tested in production

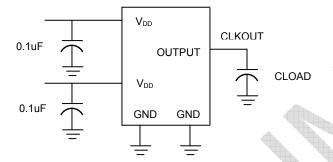
March 2007

rev 0.1

Switching Waveforms

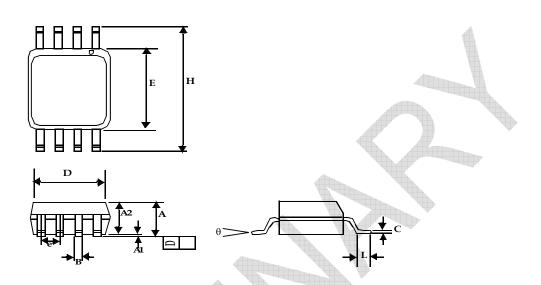


PCS5P23Z05A/09A


Giving you the edge

Test Circuits

TEST CIRCUIT # 1

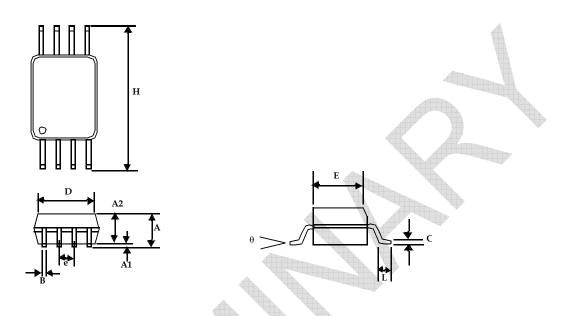


March 2007

rev 0.1

Package Information

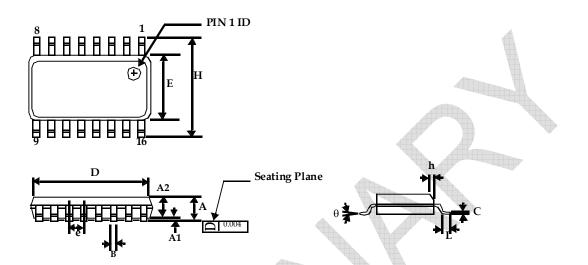
8-lead (150-mil) SOIC Package



	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
с	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90	BSC	
E	0.154	BSC	3.91	BSC	
е	0.050 BSC		1.27	BSC	
H	0.236 BSC		6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

March 2007 rev 0.1

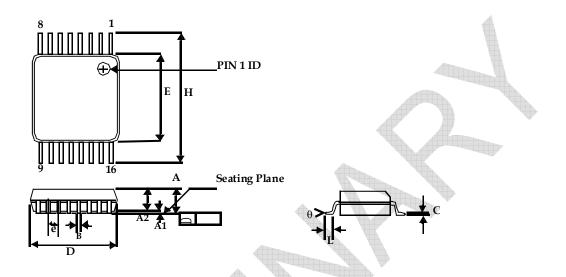
8-lead Thin Shrunk Small Outline Package (4.40-MM Body)



		nsions			
Symbol	Inc	hes	Millimeters		
	Min	Мах	Min	Max	
А	-	0.043		1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.033	0.037	0.85	0.95	
В	0.008	0.012	0.19	0.30	
с	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
E	0.169	0.177	4.30	4.50	
e	0.026 BSC		0.65 BSC		
н	0.252	2 BSC	6.40 BSC		
L	0.020	0.028	0.50	0.70	
θ	0°	8°	0°	8°	

March 2007 rev 0.1

16-lead (150 Mil) Molded SOIC Package


		Dimen	sions		
Symbol	Incl	hes	Millimeters		
	Min	Max	Min	Мах	
А	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
A2	0.049	0.059	1.25	1.50	
В	0.013	0.022	0.33	0.53	
С	0.008	0.012	0.19	0.27	
D	0.386	0.394	9.80	10.01	
E	0.150	0.157	3.80	4.00	
е	0.050 BSC		1.27	BSC	
H	0.228	0.244	5.80	6.20	
h	0.010	0.016	0.25	0.41	
L	0.016	0.035	0.40	0.89	
θ	0°	8°	0°	8°	

March 2007 rev 0.1

16-lead Thin Shrunk Small Outline Package (4.40-MM Body)

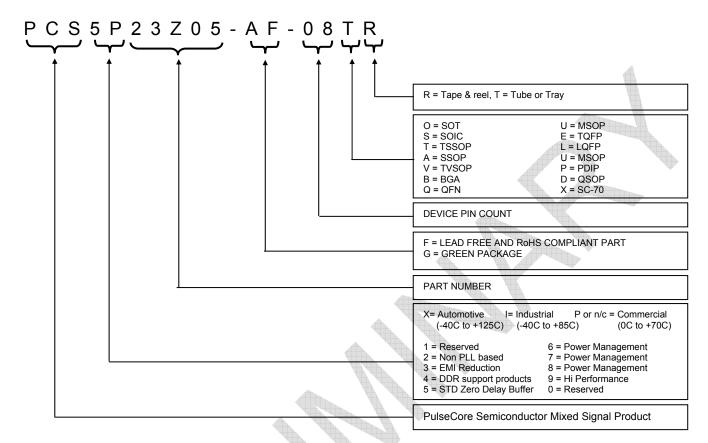
	Dimensions					
Symbol	Inch	nes	Millimeters			
	Min	Max	Min	Max		
А		0.043		1.20		
A1 (0.002	0.006	0.05	0.15		
A2	0.031	0.041	0.80	1.05		
в	0.007	0.012	0.19	0.30		
С	0.004	0.008	0.09	0.20		
D	0.193	0.201	4.90	5.10		
E	0.169	0.177	4.30	4.50		
е	0.026	BSC	0.65 BSC			
н	0.252 BSC 6.40 BSC			BSC		
L	0.020	0.030	0.50	0.75		
θ	0°	8°	0°	8°		

March 2007

rev 0.1

Ordering Codes

Ordering Code	Marking	Package Type	Temperature
PCS5P23Z05AF-08-ST	5P23Z05AF	8-pin 150-mil SOIC-TUBE, Pb Free	Commercial
PCS5I23Z05AF-08-ST	5123Z05AF	8-pin 150-mil SOIC-TUBE, Pb Free	Industrial
PCS5P23Z05AF-08-SR	5P23Z05AF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Commercial
PCS5I23Z05AF-08-SR	5I23Z05AF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Industrial
PCS5P23Z05AF-08-TT	5P23Z05AF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Commercial
PCS5I23Z05AF-08-TT	5I23Z05AF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Industrial
PCS5P23Z05AF-08-TR	5P23Z05AF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Commercial
PCS5I23Z05AF-08-TR	5I23Z05AF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Industrial
PCS5P23Z05AG-08-ST	5P23Z05AG	8-pin 150-mil SOIC-TUBE, Green	Commercial
PCS5I23Z05AG-08-ST	5123Z05AG	8-pin 150-mil SOIC-TUBE, Green	Industrial
PCS5P23Z05AG-08-SR	5P23Z05AG	8-pin 150-mil SOIC-TAPE & REEL, Green	Commercial
PCS5I23Z05AG-08-SR	5I23Z05AG	8-pin 150-mil SOIC-TAPE & REEL, Green	Industrial
PCS5P23Z05AG-08-TT	5P23Z05AG	8-pin 4.4-mm TSSOP - TUBE, Green	Commercial
PCS5I23Z05AG-08-TT	5I23Z05AG	8-pin 4.4-mm TSSOP - TUBE, Green	Industrial
PCS5P23Z05AG-08-TR	5P23Z05AG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Commercial
PCS5I23Z05AG-08-TR	5I23Z05AG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Industrial
PCS5P23Z09AF-16-ST	5P23Z09AF	16-pin 150-mil SOIC-TUBE, Pb Free	Commercial
PCS5I23Z09AF-16-ST	5123Z09AF	16-pin 150-mil SOIC-TUBE, Pb Free	Industrial
PCS5P23Z09AF-16-SR	5P23Z09AF	16-pin 150-mil SOIC-TAPE & REEL, Pb Free	Commercial
PCS5I23Z09AF-16-SR	5123Z09AF	16-pin 150-mil SOIC-TAPE & REEL, Pb Free	Industrial
PCS5P23Z09AF-16-TT	5P23Z09AF	16-pin 4.4-mm TSSOP - TUBE, Pb Free	Commercial
PCS5I23Z09AF-16-TT	5123Z09AF	16-pin 4.4-mm TSSOP - TUBE, Pb Free	Industrial
PCS5P23Z09AF-16-TR	5P23Z09AF	16-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Commercial
PCS5I23Z09AF-16-TR	5123Z09AF	16-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Industrial
PCS5P23Z09AG-16-ST	3P22S09AG	16-pin 150-mil SOIC-TUBE, Green	Commercial
PCS5I23Z09AG-16-ST	5123Z09AG	16-pin 150-mil SOIC-TUBE, Green	Industrial
PCS5P23Z09AG-16-SR	3P22S09AG	16-pin 150-mil SOIC-TAPE & REEL, Green	Commercial
PCS5I23Z09AG-16-SR	5I23Z09AG	16-pin 150-mil SOIC-TAPE & REEL, Green	Industrial
PCS5P23Z09AG-16-TT	5P23Z09AG	16-pin 4.4-mm TSSOP - TUBE, Green	Commercial
PCS5I23Z09AG-16-TT	5123Z09AG	16-pin 4.4-mm TSSOP - TUBE, Green	Industrial
PCS5P23Z09AG-16-TR	5P23Z09AG	16-pin 4.4-mm TSSOP - TAPE & REEL, Green	Commercial
PCS5I23Z09AG-16-TR	5I23Z09AG	16-pin 4.4-mm TSSOP - TAPE & REEL, Green	Industrial


Pulsecere Giving you the edge

PCS5P23Z05A/09A

March 2007

rev 0.1

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

Low Frequency Timing-Safe[™] Peak EMI Reduction IC

13 of 14

rev 0.1

PCS5P23Z05A/09A

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200, Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com

Copyright © PulseCore Semiconductor All Rights Reserved Part Number: PCS5P23Z05A/09A Document Version: 0.1

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003 Timing-Safe™ US Patent Pending.

© Copyright 2007 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.