Central
Processing
Unit

Features
m Regular, easy-to-use architecture

B Instruction set more powerful than many
minicomputers

m Directly addresses 8M bytes
@ Eight user-selectable addressing modes

® Seven data types that range from bits to
32-bit long words and word strings

® System and Normal operating modes
@ Separate code, data and stack spaces

8 Sophisticated interrupt structure

m Resource-sharing capabilities for multi-
processing systems

B Multi-programming support
B Strong compiler support

M Memory management and protection pro-
vided by 28010 Memory Management Unit

m 32-bit operations, including signed multiply
and divide

B Z-BUS compatible
B 4,6 and 10 MHz clock rate

General Description

The Z8000 is an advanced high-end 16-bit
microprocessor that spans a wide variety of
applications ranging from simple stand-alone
computers to complex parallel-processing
systems. Essentially, a monolithic minicom-

puter central processing unit, the Z8000 CPU
is characterized by an instruction set more
powerful than many minicomputers; resources
abundant in registers, data types, addressing
modes and addressing range; and a regular

-] AS ADys fat—u
nmingy 1% ADy f—
- ADy, fo—n
ADy; fat—e
~«—] READAWRITE A0y, fa—n
NORMALSYSTEN ADyg fe—o
:j BYTE/WORD AD, je—n
AD, [«—= | ADDRESS/
statusS | L, a0, | [OATA BUS
i STy ADy o=
] 8T, ADg =t
—]sT AD, fe—s
AD, f—
[28001 -—
CONTROL zego2 oy
——n] STOP cM AD; [a—>
AD fa—s-
sus | —|BUSREG b — —
28001
eo.'”‘-{ ~«—] BUSATK {— SNe |—» °'“;‘|
SNg |—
| |
N | suamant |
INTERRUPTS! — 1V Y el trr
—™] I |
' 8N, |
mMuLTI-MICRO] —> ¥ | SN —= |
CONTROL) «—1Ro
| e |
L -2

Vcc GND CLK

Figure 1. Z8000 CPU Logic Functions

General Description (Continued)

architecture that enhances throughput by
avoiding critical bottlenecks such as implied or
dedicated registers.

CPU resources include sixteen 16-bit
general-purpose registers, seven data types
that range from bits to 32-bit long words and
word strings, and eight user-selectable ad-
dressing modes. The 110 distinct instruction
types can be combined with the various data
types and addressing modes to form a powerful
set of 414 instructions. Moreover, the instruc-
tion set exhibits a high degree of regularity:
most instructions can use any of the five main
addressing modes and can operate on 8-bit byte,
16-bit word and 32-bit long-word data types.

The CPU can operate in either the System or
Normal modes.The distinction between these
two modes permits privileged operations,
thereby improving operating system organiza-
tion and implementation. Multiprogramming
is supported by the “atomic” Test and Set
instructions; multiprocessing by a combination
of instruction and hardware features; and com-
pilers by multiple stacks, special instructions
and addressing modes.

The Z8000 CPU is offered in two versions

the Z8001 48-pin segmented CPU and the
78002 40-pin CPU. The main difference between
the two is in addressing power.

The Z8001 can directly address 8 megabytes

of memory; the Z8002 directly addresses

64 kilobytes. The two operating modes - System
and Normal - and the distinction between code,
data and stack spaces within each mode allows
memory extension up to 48 megabytes for the
Z8001 and 384 kilobytes for the Z8002.

To meet the requirements of complex,
memory-intensive applications, a companion
memory-management device is available for the
78001. The Z8010 Memory Management Unit
manages the large address space by providing
features such as segment relocation and
memory protection. The Z8001 can be used
with or without the Z8010. If used by itself, the
28001 still provides an 8 megabyte direct
addressing range, extandable to 48 Megabytes:

The Z8001, Z8002 and Z8010 are fabricated
with high-density, high-performance scaled
n-channel silicon-gate depletion-load tech-
nology, and are housed in dual in-line
packages.

48M bytes Z8001 (6 x 8 M bytes)

or
384K bytes Z8002 (6 x 64 K bytes)

CODE DATA STACK
SYSTEM
NORMAL
Register Organization

The 28000 CPU is a register-oriented
machine that offers sixteen 16-bit general-
purpose registers and a set of special system
registers. All general-purpose registers can be
used as accumulators and all but one as index
registers or memory pointers.

Register flexibility is created by grouping
and overlapping multiple registers (Figures 2
and 3). For byte operations, the first eight
16-bit registers (RO...R7) are treated as sixteen
8-bit registers (RLO, RHO, ..., RL7, RH7). The

sixteen 16-bit registers are grouped in pairs

Register Organization (Continued)

(RRO ... RR14) to form 32-bit long-word
registers. Similarly, the register set is grouped

l ro [7 RHO 07 RLO o}
RRO
R |15 RH1 1 RLY 0]
. RaO
{ Rz [RH2 { AL2 1
RR2
3 [RH3 i RL3]
Ra | RH4 i AL4 |
RR4
Rs | RHS i RLS]
. RO4
Re RHS i RLS
ans { L :]
A7 [RH7 i AL]
na [1s o
RRS { I -2
])
] Ras
R10 I
RR10 {
An [|
' riz |]
RR12
A1 |]
R14* SYSTEM STACK POINTER (SEG, NO.) RQ12
Ra [NORMAL STACK POINTER (SEG. NO.)
AR14
R1§’ SYSTEM STACK POINTER (OFFSET)
Ris [NORMAL STACK POINTER (OFFSET)

Figure 2. Z8001 General-Purpose Registers

in guadruples (RQO ... RQI12) to form 64-bit

registers.

{ rof7 RHO 7 RLO o]
ARO
i1 RAH1 i AL1 o]
ROO
{ L] RH2 T RL2 1
RR2
3| RH3 T RL3 |
Ra | [T 1 AL4]
RA4
nsf RHS H RLS]
RO4
ne [RHS T RLG 1
RRS
a7 RH7 RL7]
rsf1s o
ARS8 { L o
|]
RO8
{ mo| I
RR10
An |]
R12
RR12 : L l
LN |
el] RO12
RR14 ris | SYSTEM STACK POINTER
Ris| NORMAL STACK POINTER

Figure 3. Z8002 General-Purpose Registers

Stacks

The 28001 and Z8002 can use stacks located
anywhere in memory. Call and Return instruc-
tions as well as interrupts and traps use im-
plied stacks. The distinction between normal
and system stacks separates system information
from the application program information. Two
stack pointers are available: the system stack
pointer and the normal stack pointer. Because
they are part of the general-purpose register

group, the user can manipulate the stack
pointers with any instruction available for
register operations.

In the Z8001, register pair RR14 is the
implied stack pointer. Register R14 contains
the 7-bit segment number and R15 contains the
16-bit offset. In the 28002, register R15 is the
implied 16-bit stack pointer.

Refresh

The Z8000 CPU contains a counter that
can be used to automatically refresh dynamic
memory. The refresh counter register consists
of a 9-bit row counter, a 6-bit rate counter and
an enable bit (Figure 4). The 9-bit row counter
can address up to 256 rows and is incremented

by two each time the rate counter reaches
end-of-count. The rate counter determines the
time between successive refreshes. It consists
of a programmable 6-bit modulo-n prescaler
(n = 1 to 64), driven at one-fourth the CPU
clock rate. The refresh period can be pro-

Refresh (Continued)

grammed from 1 to 64 us with a 4 MHz clock.
Refresh can be disabled by programming the
refresh enable/disable bit.

15 0
| N

Figure 4. Refresh Counter

Program Status Information

This group of status registers contains the
program counter, flags and control bits. When
an interrupt or trap occurs, the entire group
is saved and a new program status group is
loaded.

Figure 5 illustrates how the program status
groups of the Z800! and Z8002 differ. In the
non-segmented Z8002, the program status
group consists of two words: the program
counter (PC), and the flag and control word
(FCW). In the segmented Z8001, the program

15]

uouuunnonanoonoull““‘""“
llllllllllllllll[""’"’

| FLaG anp
[eTon] s Tl o v oo [[Le [on [n [v, o] | Eopeae
Ll i | worp

IDT SEGMENT NUMBER [u o
T T S T N P T S U B B

PROGAAM
COUNTER

[SEGMENT OFFSET
] 1 Il 1 1 1 1 1 1 1 1 H]

Z8001 Program Status Registers

15 o

SEGMENT NUMBER

I“I TR T |°|°1°|“|"|“|°1“|
UPPER OFFSET s

I [A S]“l L 1"1°|°|"1°|

78001 Program Status Area Pointer

status group consists of four words: a two-word
program counter, the flag and control word
and an unused word reserved for future use.
Seven bits of the first PC word designate one
of the 128 memory segments. The second word
supplies the 16-bit offset that designates a
memory location within the segment.

With the exception of the segment enable bit
in the Z8001 program status group, the flags
and control bits are the same for both CPUs.

15 0
LT e o o oo e[[w]oa [] o, o] a0

l ADORESS
1 1 1 Il 1 1 L Il |

l'-mx;nu
Ll | COUNTER

28002 Program Status Registers

15 G
UPPER POINTER
| I 1u1°|°|°|"1°1°1“1i|

28002 Program Status Area Pointer

Figure 5. Z8000 CPU Special Registers

Interrupt and Trap Structure

The Z8000 provides a very flexible and
powerful interrupt and trap structure. Inter-
rupts are external asynchronous events requir-
ing CPU attention, and are generally triggered
by peripherals needing service. Traps are syn-
chronous events resulting from the execution
of certain instructions. Both are processed in a
similar manner by the CPU.

The CPU supports three types of interrupts
(non-maskable, vectored and non-vectored)
and four traps (system call, unimplemented
instruction, privileged instructions and
segmentation trap). The vectored and non-
vectored interrupts are maskable. Of the four
traps, the only external one is the segmenta-
tion trap, which is generated by the Z8010.

Interrupt and Trap Structure (Continued)

The remaining traps occur when instructions
limited to the system mode are used in the nor-
mal mode, or as a result of the System Call in-
struction, or for an unimplemented instruction.
The descending order of priority for traps
and interrupts is: internal traps, non-maskable
interrupt, segmentation trap, vectored inter-
rupt and non-vectored interrupt.

When an interrupt or trap occurs, the cur-
rent program status is automatically pushed on
the system stack. The program status consists
of the processor status (PC and FCW) plus a
16-bit identifier. The identifier contains the

reason or source of the trap or interrupt. For
internal traps, the identifier is the first word

of the trapped instruction. For external traps
or interrupts, the identifier is the vector on the
data bus read by the CPU during the
interrupt-acknowledge or trap-acknowledge
cycle.

After saving the current program status, the
new program status is automatically loaded
from the program status area in system
memory. This area is designated by the pro-
gram status area pointer (PSAP).

Data Types

Z8000 instructions can operate on bits, BCD
digits (4 bits), bytes (8 bits), words (16 bits),
long words (32 bits), byte strings and word
strings (up to 64 kilobytes long). Bits can be
set, reset and tested; digits are used in BCD
arithmetic operations; bytes are used for
characters or small integer values; words are
used for integer values, instructions and non-
segmented addresses; long words are used for

long integer values and segmented addresses.
All data elements except strings can reside
either in registers or memory. Strings are
stored in memory only.

The basic data element is the byte. The
number of bytes used when manipulating a
data element is either implied by the operation
or-for strings and multiple register opera-
tions - explicitly specified in the instruction.

Segmentation and Memory Management

High-level languages, sophisticated operat-
ing systems, large programs and data bases,
and decreasing memory prices are all accel-
erating the trend toward larger memory
usage in microcomputer systems. The Z8001
meets this requirement with a basic 8M byte

addressing space of 64K x 128 segments. This
large address space is directly accessed by the
CPU using a segmented addressing scheme and
can be managed by the Z8010 Memory Manage-
ment Unit.

Segmented Addressing

A segmented addressing space - compared
with linear addressing - is closer to the way a
programmer uses memory because each pro-
cedure and data space resides in its own seg-
ment. The 8 Megabytes of 28001 addressing
space is divided into 128 relocatable segments
up to 64 kilobytes each. A 23-bit segmented

address uses a 7-bit segment address to point
to the segment, and a 16-bit offset to address
any location relative to the beginning of the
segment. The two parts of the segmented
address may be manipulated separately. The
segmented Z8001 can run any code written for
the non-segmented Z8002 in any one of its

Segmented Addressing (Continued)

128 segments, provided it is set to the non-
segmented mode.

In hardware, segmented addresses are con-
tained in a register pair or long-word memory
location. The segment number and offset can
be manipulated separately or together by all
the available word and long-word operations.

When contained in an instruction, a
segmented address has two different represen-

tations: long offset and short offset. The long
offset occupies two words, whereas the short
offset requires only one and combines in one
word the 7-bit segment number with an 8-bit
offset (range 0-256). The short offset mode
allows very dense encoding of addresses and
minimizes the need for long addresses
required by direct accesssing of this large
address space.

Memory Management

The addresses manipulated by the program-
mer, used by instructions and output by the
Z8001 are called logical addresses. The
Memory Management Unit takes the logical
addresses and transforms them into the
physical addresses required for accessing the
memory (Figure 6). This address transforma-
tion process is called relocation. Segment
relocation makes user software addresses inde-
pendent of the physical memory so the user is
freed from specifying where information is
actually located in the physical memory.

The relocation process is transparent to user
software. A translation table in the Memory
Management Unit associates the 7-bit segment
number with the base address of the physical
memory segment. The 16-bit offset is added to
the physical base address to obtain the actual
physical address. The system may dynamically
reload translation tables as tasks are created,
suspended or changed.

In addition to supporting dynamic segment
relocation, the Memory Management Unit also
provides segment protection and other seg-
ment management features. The protection
features prevent illegal uses of segments, such
as writing into a write-protected zone.

Each Memory Management Unit stores 64

segment entries that consist of the segment
base address, its attributes, size and status.

Segments are variable in size from 256 bytes to
64 kilobytes in increments of 256 bytes. Pairs
of Management Units support the 128 segment
numbers available for each of the six CPU
address spaces. Within an address space,
several Management Units can be used to
create multiple translation tables.

6 0 15 8 7 0
T
LOGICAL ADDRESS l SEGMENT NO.] I OFF SET J
e,

T

BASE
ADDRESS
REGISTER

FILE

Figure 6. Logical-to-Physical Address
Transformation

Extended Processing Architecture

The Extended Processing Architecture
(EPA) provides an extremely flexible and
modular approach to expanding both the hard-
ware and software capabilities of the Z8000
CPU. Features of the EPA include:

B Specialized instructions for external proc-
essors or software traps may be added to
CPU instruction set.

B Increases throughput of the system by using
up to four specialized external processors in
parallel with the CPU.

B Permits modular design of Z8000-based
systems.

B Provides easy management of multiple
microprocessor configurations via “'single
instruction stream’” communication.

B Simple interconnection between extended
processing units and Z8000 CPU requires no
additional external supporting logic.

B Supports debugging of suspect hardware
against proven software.

Specific benefits include:

B EPUs can be added as the system grows and
as EPUs with specialized functions are
developed.

B Control of EPUs is accomplished via a
“'single instruction stream’ in the Z8000
CPU, eliminating many significant system
software and bus contention management
obstacles that occur in other multiprocessor
(e.g., master-slave) organization schemes.

The processing power of the Z8000 can be

boosted beyond its intrinsic capability by

Extended Processing Architecture.

Simply stated, EPA allows the Z8000 CPU

to accomodate up to four Extended

Processing Units (EPUs), which perform

specialized functions in parallel with the CPU’s

main instruction execution stream.
The use of extended processors to boost the
main CPU’s performance capability has been

proven with large mainframe computers and
minicomputers. In these systems, specialized
functions such as array processing, special
input/output processing, and data communica-
tions processing are typically assigned to
extended processor hardware. These extended
processors are complex computers in their own
right.

The Extended Processing Architecture
combines the best concepts of these proven
performance boosters with the latest in high-
density MOS integrated-circuit design. The
result is an elegant expansion of design
capability—a powerful microprocessor
architecture capable of connecting single-chip
EPUs that permits very effective parallel
processing and makes for a smoothly inte-
grated instruction stream from the Z8000 pro-
grammer's point of view. A typical addition to
the current Z8000 instruction set is Floating
Points Instructions.

The Extended Processing Units connect
directly to the Z-BUS and continuously
monitor the CPU instruction stream.

When an extended instruction is detected, the
appropriate EPU responds, obtaining or
placing data or status information on the
Z-BUS using the Z8000-generated control
signals and performing its function as directed.

The Z8000 CPU is responsible for instructing
the EPU and delivering operands and data to
it. The EPU recognizes instructions intended
for it and executes them, using data supplied
with the instruction and/or data within its inter-
nal registers. There are four classes of EPU
instructions:

B Data transfers between main memory and

EPU registers

B Data transfers between CPU registers and
EPU registers

® EPU internal operations

B Status transfers between the EPUs and the
Z8000 CPU Flag and Control Word register
(FCW)

Extended Processing Architecture (Continued)

Four Z8000 addressing modes may be utilized
with transfers between EPU registers and the
CPU and main memory:

B Register

W Indirect Register
B Direct Address
B Indexed

In addition to the hardware-implemented
capabilities of the Extended Processing
Architecture, there is an extended instruction
trap mechanism to permit software simulation
of EPU functions. A control bit in the Z8000
FCW register indicates whether actual EPUs
are present or not. If not, when an extended
instruction is detected, the Z8000 traps on the
instruction, so that a software “trap handler”
can emulate the desired EPU function—a very
useful development tool. The EPA software
trap routine supports the debugging of suspect
hardware against proven software. This feature
will increase in significance as designers
become familiar with the EPA capability of the
28000 CPU.

This software trap mechanism facilitates the
design of systems for later addition of EPUs:
initially, the extended function is executed as a
trap subroutine; when the EPU is finally
attached, the trap subroutine is eliminated and

the EPA control bit is set. Application software
is unaware of the change.

Extended Processing Architecture also offers
protection against extended instruction over-
lapping. Each EPU connects to the Z8000 CPU
via the STOP line so that if an EPU is
requested to perform a second extended
instruction function before it has completed the
previous one, it can put the CPU into the
Stop/Refresh state until execution of the
previous extended instruction is complete.

EPA and CPU instruction execution are
shown in Figure 8. The CPU begins operation
by fetching an instruction and determining
whether it is a CPU or an EPU command. The
EPU meanwhile monitors the Z-BUS for its own
instructions. If the CPU encounters an EPU
command, it checks to see whether an EPU is
present; if not, the EPU may be simulated by
an EPU instruction trap software routine; if an
EPU is present, the necessary data and/or
address is placed on the Z-BUS. If the EPU is
free when the instruction and data for it
appear, the extended instruction is executed.
1f the EPU is still processing a previous
instruction, it activates the CPU’s STOP line to
lock the CPU off the Z-BUS until execution
is complete. After the instruction is finished,
the EPU deactivates the STOP line and CPU

transactions continue.

STOP LINE
wsy [—]oEowcATED apy [oeoicateo 23000 wpy [DedicaTED spy |— veoicareo
1 wewony 2] MemoRy cru 3 1 wemonry 4 [memonr
[Z.BUS COMPONENT INTERFACE]

L |

|

PERIPHERAL PERIPHERAL

MEMORY
MANAGEMENT
uNIT

|

MEMORY

Figure 7. Typical Extended Processor Configuration

10

Extended Processing Architecture (Continued)

START
CcPU

STATE

FETCH

NEXT
INSTRUCTION

1

CPY
EXECUTES
INSTRUCTION

EPA TRAP
SERVICE
ROUTINE

| e—]

r—--—

MONITOR Z-BUS
INSTI

STREAM

CPU GENERATES EPU
DATAJADDRESS EXECUTES
AND ;:::s ON INSTRUCTION

——

SET STOP
LINE AT CPU
UNTIL EPU
FREE

£\ DATA OR ADDRESSES ARE PLACED ON THE BUS AND USED BY THE EPU IN THE EXECUTION OF AN INSTRUCTION.

Figure 8. EPA and Z8000 CPU Instruction Execution

Addressing Modes

The information included in Z8000 instruc-
tions consists of the function to be performed,
the type and size of data elements to be
manipulated and the location of the data
elements. Locations are designated by register
addresses, memory addresses or /O
addresses. The addressing mode of a given
instruction defines the address space it refer-
ences and the method used to compute the
address itself. Addressing modes are explicitly
specified or implied by the instruction.

Figure 4 illustrates the eight addressing
modes: Register (R), Immediate (IM), Indirect
Register (IR), Direct Address (DA), Indexed
(X), Relative Address (RA), Base Address (BA)
and Base Indexed (BX). In general, an ad-
dressing mode explicitly specifies either
register address space or memory address
space. Program memory address space and
1/0O address space are usually implied by the
instruction.

11

Mode Operand Addressing Qperand Value
In the Instruction In a Register In Memory
The content of the
Register | reaisten aooress =] openano | register
Immediate In the instruction
The content of the location
lnd!rect rnecnsrsn ADDRESS HADDRESS} OPER whose address is in the
Register register
. The content of the location
Direct | = I OPERAND I whose address is in the
Address instruction
The content of the location
REGISTER ADDRESS ——FSPLACEMENT whose address is the
Index address in the instruction,
Sase v offset by the content of
the working register
The content of the location
e YALUE whose address is the
Relative 1 of the program
Address l DISPLACEMENT _ |- + OPERAND counter, oifset by the
displacement in the
instruction
The content of the location
Base REGISTER ADDRESS BASE ADDRESS whose address is the
DISPLACEMENT ;+)——| : : I ddress in the register.
Address Sha offset by the displacement
in the instruction
The content of the location
Base REGISTER ADDRESS [—] BASE ADDRESS whose address is the
address in the register,
Index REGISTER ADDRESS |—] DISPLACEMENT |} (+) offset by the displace-
ment in the register
Figure 9. Addressing Modes

Input/Output

A set of I/O instructions performs 8-bit or
16-bit transfers betwen the CPU and I/O
devices. I/Q devices are addressed with a
16-bit I/O port address. The I/O port address
is similar to a8 memory address; however, I/O
address space is not part of the memory
address space. [/O port and memory addresses
coexist on the same bus lines and they are
distinguished by the status outputs.

Two types of I/O instructions are available:
standard and special. Each has its own address
space. Standard /O instructions include a
comprehensive set of In, Out and Block I/O
instructions for both bytes and words. Special
I/O instructions are used for loading and
unloading the Memory Management Unit. The
status information distinguishes between stan-
dard and special [/O references.

Multi-Micro-Processor Support

Multi-microprocessor systems are supported
in hardware and software. A pair of CPU pins
is used in conjunction with certain instructions
to coordinate multiple microprocessors. The
Multi-Micro Out pin issues a request for the
resource, while the Multi-Micro In pin is used
to recognize the state of the resource. Thus,
any CPU in a multiple microprocessor system
can exclude all other asynchronous CPUs from
a critical shared resource.

Multi-microprocessor systems are supported
in software by the instructions Multi-Micro
Request, Test Multi-Micro In, Set Multi-Micro
Out and Reset Multi-Micro Out. In addition,
the eight Megabyte CPU address space is
beneticial in multiple microprocessor systems
that have large memory requirements.

Instruction Set Summary
The Z8000 provides the following types of
instructions:
® Load and Exchange
® Arithmetic
® Logical
® Program Control

m Bit Manipulation

m Rotate and Shift

®m Block Transfer and String Manipulation
8 Input/Output

m CPU Control

13

Load and Exchange

Clock Cycles*
M Op d Addr. Word, Byte Long Word Operation
Modes N5 ss s Ns ss sL
CLR dst R 7 - - Clear
CLRB IR 8 - - dst — 0
DA 11 12 14
X 12 12 15
EX R, src R 6 - - Exchange
EXB IR 12 - - R = src
DA 15 16 18
X 16 16 19
LD R, src R 3 - - 5 - - Load into Register
LDB M 7 - - 11 - - R — src
LDL M 5 (byte only)
R 7 - - 11 - -
DA 9 10 12 12 13 15
X 10 10 13 13 13 16
BA 14 - - 17 - -
BX 14 - - 17 - -
LD dst,R IR 8 - - 11 - - Load into Memory (Store)
LDB DA 11 12 H 14 15 17 dst — R
LDL X 12 12 15 15 15 18
BA 14 - - 17 - -
BX 14 - - 17 - -
LD dst, IM IR 11 - - Load Immediate into Memory
LDB DA 14 15 17 dst — IM
X 15 18 18
LDA R, src DA 12 13 15 Load Address
X 13 13 16 R « source address
BA 15 - -
BX 15 - -
LDAR R, src RA 1§ - - Load Address Relative
R — source address
LDK R, src M 5 - - Load Constant
R—~n(n=20...15
LDM R,src,n IR 11 - - Load Multiple
DA 14 15 17] +3n R - src (n consecutive words)
X 15 15 8 (n=1...16)
LDM dst,R,n IR 11 - - Load Multiple (Store Multiple)
DA 14 15 17] +3n dst — R (n consecutive words)
X 15 15 18 (n=1...16)
*NS = d SS d Short Offset SL = Segmented Long Offset

Load and Exchange (Continued)

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes ns ss SL NS sS SL

LDR R, src RA 14 - - 17 - - Load Relative
LDRB R — src
LDRL (range -32768 ... +32767)
LDR dst,R RA 14 - - 17 - - Load Relative (Store Relative)
LDRB dst — R
LDRL (range -32768 ... +32767)
POP dst, IR R 8 - - 12 - - Pop
POPL IR 12 - - 19 - - dst — IR
DA 16 16 18 23 23 2B Autoincrement contents of R
X 16 16 19 23 23 26
PUSH IR, src R 9 - - 12 - - Push
PUSHL M 12 - - - - - Autodecrement contents of R
IR 13 - - 20 - - IR ~ src
DA 14 14 16 21 21 23
X 14 14 17 21 21 24
Arithmetic
ADC R, src R 5 - - Add with Carry
ADCB R — R + src + carry
ADD R, src R 4 - - 8 - - Add
ADDB M 7 - - 14 - - R — R + src
ADDL IR 7 - - 14 - -
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
Ccp R, src R 4 - - 8 - - Compare with Register
CPB IM 7 - - 14 - - R - src
CPL IR 7 - - 14 - -
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP dst, IM IR 11 - - Compare with Immediate
CPB DA 14 15 17 dst - IM
X 15 15 18
DAB dst R 5 - - Decimal Adjust
DEC dst,n R 4 - - Decrement by n
DECB IR 1 - - dst — dst - n
DA 13 14 16 (n=1...16)
X 14 14 17

18

Arithmetic (Continued)

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes Ns ss sL Ns ss sL

DIV R, src R 107 - - 744 - - Divide (signed)
DIVL M 107 - - 744 - - Word: Ry, — Ry 4] + src
IR 107 107 107 744 744 744 R, — remainder
DA 108 109 111 745 746 748 Long Word: R4 n+3 = R, n+3 + src
X 109 109 112 746 746 749 Rp, n+1 — remainder
EXTS dst R 11 - 11 - Extend Sign
EXTSB Extend sign of iow order half of dst
EXTSL through high order half of dst
INC dst,n R 4 - - Increment by n
INCB IR 11 - - dst — dst + n
DA 13 14 16 (n=1...16)
X 14 14 17
MULT R, src R 70 - - 282° - - Multiply (signed)
MULTL M 70 - - 282" - Word: R, 41 — Bp4] »src
IR 70 - - 282" - - Long Word: R, .3+ Rn+2 n+3
DA 7772 74 283* 284" 286" * Plus seven cycles for each 1 in the
X 72 72 15 284" 284* 287" multiplicand
NEG dst R 7 - - Negate
NEGB IR 12 - - dst — 0 - dst
DA 15 16 18
X 16 16 19
SBC R, src R S - - Subtract with Carry-
SBCB R — R - src - carry
SUB R, src R 4 - - 8 - - Subtract
SUBB IM 7 - - 14 - - R — R -src
SUBL IR 7 - - 14 - -
DA 9 10 12 15 16 18
X 10 10 13 16 16 19

Logical
AND R, src R 4 - - AND
ANDB IM 7 - - . R — R AND src
IR 7 -
DA g 10 12
X 10 10 13
COM dst R 7 - - Complement
COMB IR 12 - - dst — NOT dst
DA 15 16 18
X 16 16 19

Logical (Continued)

Clock Cycles
M Op Addr. Word, Byte Long Word Operation
Modes Ns g5 s NS ss sL
OR R, src R 4 - - OR
ORB M 7 - - R — ROR src
IR 7 - -
DA g 10 12
X 10 10 13
TCC cc, dst R 5 - - Test Condition Code
TCCB Set LSB if cc is true
TEST dst R 7 - - 13 - Test
TESTB IR 8 - - 13 - dst OR 0
TESTL DA 11 12 14 16 17
X 12 12 15 1717
XOR R, src R 4 - - Exclusive OR
XORB M 7 - - R — R XOR src
IR 7 - -
DA 9 10 12
X 10 1 13
Program Control
CALL dst IR 100 - 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP — PC
PC — dst
CALR dst RA 10 - 15 Call Relative
Autodecrement SP
@ SP — PC
PC — PC + dst (range -4094 to +4096)
DINZ R, dst RA 11 - - Decrement and Jump if Non-Zero
DBJNZ R—R-1
If R # 0: PC — PC + dst(range -254100)
IRET* - - 13 - 16 Interrupt Return
PS — @ SP
Autoincrement SP
TP cc, dst IR 10 - 15 (taken) Jump Conditional
IR 7 - 7 (not taken) If cc is true: PC — dst
DA 7 8 10
X 8 8 11
R cc, dst RA 6 - - Jump Conditional Relative

* Privileged instruction. Executed in system mode only.

If cc is true: PC — PC + dst
(range -256 to +254)

Program Control (Continued)

Clock Cycles
M i Op d Addr. Word, Byte Long Word Operation
Modes ys ss sL NS ss SL
RET cc - 10 - 13 (taken) Return Conditional
7 - 7 (not taken) If cc is true: PC — @ SP
Autoincrement SP
SC src M 33 - 39 System Call
Autodecrement SP
@ SP — old PS
Push instruction
PS — System Call PS
Bit Manipulation
BIT dst,b R 4 - - Test Bit Static
BITB IR 8 - - Z flag — NOT dst bit specified by b

DA 10 11 13
X 11 11 14

BIT dst,R R 10 - - Test Bit Dynamic
BITB Z flag — NOT dst bit specified by
contents of R
RES dst, b R 4 - - Reset Bit Static
RESB IR 11 - - Reset dst bit specified by b
DA 13 14 16
X 14 14 17
RES dst,R R 10 - - Reset Bit Dynamic
RESB Reset dst bit specified by contents R
SET dst, b R 4 - - Set Bit Static
SETB IR 11 - - Set dst bit specified by b
DA 13 14 16
X 14 14 17
SET dst,R R 10 - - Set Bit Dynamic
SETB Set dst bit specified by contents of R
TSET dst R 7 - - Test and Set
TSETB IR 1 - - S flag — MSB of dst
DA 14 15 17 dst — all Is
X 15 15 18

Rotate and Shift

Clock Cycles
M A Op d Addr. Word, Byte Long Word Operation
Modes ns 55 sL N5 ss sL

RL dst,n R 6forn =1 Rotate Left
RLB R 7forn =2 by nbits(n = 1, 2)
RLC dst,n R 6forn =1 Rotate Left through Carry
RLCB R 7forn = 2 by nbits (n = 1, 2)
RLDB R, src R g - - Rotate Digit Left
RR dst,n R 6forn =1 Rotate Right
RRB R 7forn =2 bynbits(n = 1, 2)
RRC dst,n R 6forn=1 Rotate Right through Carry
RRCB R 7forn =2 by nbits(n = 1, 2)
RRDB R, src R 9 - - Rotate Digit Right
SDA dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right
SDAL by contents of R
SDL dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right
SDLL by contents of R
SLA dst, n R (13 + 3n) (13 +3n) Shift Left Arithmetic
SLAB by n bits
SLAL
SLL dst,n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB by n bits
SLLL
SRA dst, n R (13 +3n) (13 + 3n) Shift Right Arithmetic
SRAB by n bits
SRAL
SRL dst,n R (13 + 3n) (13 + 3n) Shift Right Logical
SRLB by n bits
SRLL
Block Transfer and String Manipulation
CPD Ry, src, Ry, cc IR 20 - - Comp and D t
CPDB Ry - src

Autodecrement src address

Ry — Ry -1

19

Block Transfer and String Manipulation (Continued)

Clock Cycles
M i Op d Addr. Word. Byte Long Word Operation
Modes nNs ss s Ns ss SL
CPDR Ry.src, Ry, cc IR (11 + 9n) Compare, Decrement and Repeat
CPDRB Ry - src
Autodecrement src address
Ry — Ry -1
Repeat until cc is true or Ry = 0
CP1 Ry.src, Ry, cc IR 20 - - Comp and I
CPIB Ry - src
Autoincrement src address
Ry — Ry -1
CPIR Ry. src, Ry, cc IR (11 + 9n) Comp h¢ t and Rep
CPIRB Ry - src
Autoincrement src address
Ry — Ry -1
Repeat until cc is true or Ry = 0
CPSD dst, sre, R, cc 1R 25 - - Compare String and Decrement
CPSDB dst - src
Autodecrement dst and src addresses
R—R-1
CPSDR dst, src, R, cc IR (11 + 14 n) Compare String, Decr. and Repeat
CPSDRB dst - src
Autodecrement dst and src addresses
R—R-1
Repeat until cc is trueor R = 0
CPsl dst, src, R, cc IR 25 - - Compare String and 1 t
CPSIB dst - src
Autoincrement dst and src addresses
R—R-1
CPSIR dst, src, R, cc IR (11 + 14n) Compare String. Incr. and Repeat
CPSIRB dst - src
Autoincrement dst and src addresses
R—R-1
Repeat until cc istrue orR = 0
LDD dst, src, R IR 20 - - Load and Decrement
LDDB dst — src
Autodecrement dst and src addresses
R—R-1
LDDR dst, src, R IR (11 + 9n) Load, Decrement and Repeat
LDDRB dst «— src
Autodecrement dst and src addresses
R—~R-1

Repeat until R = 0

20

Block Transfer and String Manipulation (Continued)

Addr.
Modes

Clock Cycles

Word, Byte
NS SS SL

Long Word
NS Ss SL

Operation

dst, src, R

IR

20 - -

Load and Increment
dst «~ src
Autoincrement dst and src addresses

R—~R-1

dst, src, R

(11 + 9n)

Load, Increment and Repeat

dst — src

Autoincrement dst and src addresses
R—~R-1

Repeat untilR = 0

TRDB

dst, src, R

2 - -

T late and D t
dst — src (dst)
Autodecrement dst address
R~R-1

TRDRB

dst, src, R

(11 + 14 n)

T 1 Dec and Repeat
dst = src (dst)

Autodecrement dst address
R—TR-1

Repeat untilR = 0

dst, src, R

25 - -

T late and I t
dst — src (dst)
Autoincrement dst address
R~ R-1

dst, src, R

(11 + 14n)

T i! I t and Rep
dst — src (dst)

Autoincrement dst address
R—~R-1

Repeat until R = 0

TRTDB

srcl,src2,R

IR

28 - -

Translate and Test. Decrement
RH! — src 2 (src 1)
Autodecrement src 1 address
R—R-1

TRTDRB

srcl,src2, R

(11 + 14 n)

Translate and Test, Decr. and Repeat
RH1 «~ src 2 (src 1)

Autodecrement src 1 address
R—~R-1

Repeat until R = Oor RH1 = 0

TRTIB

srcl,src2, R

IR

25

Translate and Test. Increment
RH1 — src 2 (src 1)
Autoincrement src 1 address
R—~R-1

21

Block Transfer and String Manipulation (Continued)

Clock Cycles
M i Op d Addr. Word. Byte Long Word Operation
Modes nNs ss s Ns ss sL

TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test. Incr. and Repeat
RH1 — src 2 (src 1)
Autoincrement src | address
R—R-1
Repeat until R = Oor RH1 = 0

Input/Output

IN* R,src IR 10 - - Input

INB* DA 12 - - R « src

IND* dst, src, R IR 21 - - Input and Decrement

INDB* dst — src
Autodecrement dst address
R—~R-1

INDR* dst, src, R IR (11 + 10n) Input. Decrement and Repeat

INDRB* dst — src
Autodecrement dst address
R—R-1
Repeat untilR = 0

INI* dst, src, R IR 21 - - Input and Increment

INIB* dst — src
Autoincrement dst address
R—R-1

INIR* dst, src, R IR (11 + 10n) Input, Increment and Repeat

INIRB* dst = src
Autoincrement dst address
R—R-1
Repeat untii R = 0

ouT* dst,R IR 10 - - Output

OouTB* DA 12 - - dst — R

ouTD* dst, src, R IR 21 - - Output and Decrement

OuUTDB* dst — src
Autodecrement src address
R~R-1

OTDR* dst, src, R IR (11 + 10n) Output, Decrement and Repeat

OTDRB* . dst = src
Autodecrement src address
R—R-1

Repeat untilR = 0

* Privileged instructions. Exeecuted in system mode only.

22

Input/Output (Continued)

Clock Cycles
M \ Op d Addr. Word, Byte Long Word Operation
Modes ns ss sL Ns ss sL
ouTI* dst, src,R IR 21 - - Output and Increment
OUTIB* dst — src
Autoincrement src address
R~R-1
OTIR* dst, src, R IR (11 + 10 n) Output. Increment and Repeat
OTIRB* dst «— src
Autoincrement src address
R~R-1
Repeat untilR = 0
SIN* R, src DA 12 - - Special Input
SINB* R ~ src
SIND* dst, src, R IR 21 - - Special Input and Decrement
SINDB* dst — src
Autodecrement dst address
R~R-1
SINDR* dst, sre, R IR (11 + 10n) Special Input, Decrement and Repeat
SINDRB* dst — src
Autodecrement dst address
R~R-1
Repeat until R = 0
SINI* dst, src, R. IR 21 - - Special Input and Increment
SINIB* dst — src
Autoincrement dst address
R—~R-1
SINIR* dst, src, R IR (11 + 10n) Special Input. I t and Repeat
SINIRB* dst — src
Autoincrement dst address
R—~R-1
Repeat until R = 0
sSouT* dst, src DA 12 - - Special Output
SOUTB* dst — src
SOUTD* dst, src, R IR 21 - - Special Output and Decrement
SOUTDB* dst — src
Autodecrement src address
R—R-1
SOTDR* dst, src, R IR (11 + 10n) Special Output, Decr. and Repeat
SOTDRB* dst «— src

* Privileged instructions. Executes in system mode only.

Autodecrement src address
R—R-1
Repeat untilR = 0

23

Input/Output (Continued)

Clock Cycles
M i Op d Addr. Word, Byte Long Word Operation
Modese N5 ss sL Ns ss SL
SOUTI* dst, src, R IR 21 - - Special Output and Increment
SOUTIB* dst — src
Autoincrement src address
R—~R-1
SOTIR* dst, src, R R (11 + 10 n) Special Output, Incr. and Repeat
SOTIRB* dst — src
Autoincrement src address
R—~R-1
Repeat untilR = 0
CPU Control
COMFLG flags - 7 - - Complement Flag
(Any combination of C, Z, S, P/V)
DI* int - 7 - - Disable Interrupt
(Any combination of NVI, VI)
EI* int - 7 - - Enable Interrupt
(Any combination of NVI, VI)
HALT* - - (8 + 3n) HALT
LDCTL* CTLR, src R 7 - - Load into Control Register
CTLR ~- src
LDCTL* dst, CTLR R 7 - - Load from Control Register
dst — CTLR
LDCTLB FLGR, src R 7 - - Load into Flag Byte Register
FLGR - src
LDCTLB dst, FLGR R 7 - - Load from Flag Byte Register
dst — FLGR
LDPS* sre IR 12 - 16 Load Program Status
DA 16 20 22 PS = src
X 17 20 23
MBIT* - - 7 - - Test Multi-Micro Bit
Set S if My is Low; reset S if Mj is High.
MREQ* dst R (12 + 7n) Multi-Micro Request
MRES* - - 5 - - Multi-Micro Reset

"Privileged instructions. Executed 1n system mode only.

24

CPU Control (Continued)

Clock Cycles
M Op d Addr. Word. Byte Long Word Operation
Modes N5 ss sL Ns ss sL
MSET * - - 5 - - Multi-Micro Set
NOP - - 7 - - No Operation
RESFLG flag - 7 - - Reset Flag
(Any combination of C, Z, S, P/V)
SETFLG flag - 7 - - Set Flag
(Any combination of C, Z, S, P/V)
“Privileged instructions. Executed in system mode only.
Condition Codes
Code Meaning Flag Settings CC Field
Always false - 0000
Always true - 1000
Z Zero Z =1 0l10
NZ Not zero Z =0 1110
(o} Carry C =1 0111
NC No Carry C=0 1111
PL Plus S =0 1101
MI Minus S =1 0101
NE Not equal Z =0 1110
EQ Equal Z =1 0110
ov Overflow PV =1 0100
NOV No overtlow P/V =0 1100
PE Parity is even P/V =1 0100
PO Parity is odd PV =0 1100
GE Greater than or equal (signed) (SXORP/V) =0 1001
LT Less than (signed) (SXORP/WV) =1 0001
GT Greater than (signed) [ZOR (S XOR P/V)] = 0 1010
LE Less than or equal (signed) [ZOR(SXORP/V)] = 1 0010
UGE Unsigned greater than or equal C=0 1111
ULT Unsigned less than C=1 0111
UGT Unsigned greater than (C=0AND(Z =0)] =1 1011
ULE Unsigned less than or equal (CORZ) =1 0011

Note that some condition codes have identical flag settings and binary fields in the instruction:
Z = EQ, NZ = NE, C = ULT, NC = UGE, OV = PE, NOV = PO

Status Line Codes
ST3-STo Detinition ST3-8Tg Definition
0000 Internal operation 1000 Data memory request
0001 Memory refresh 1001 Stack memory request
0010 1/O reference 1010 Data memory request (EPU)
0011 Special I/O reference (e.g., to an MMU) 1011 Stack memory request (EPU)
0100 Segment trap acknowledge 1100 Program reference, nth word
0101 Non-maskable interrupt acknowledge 1101 Instruction fetch, first word
0110 Non-vectored interrupt acknowledge 1110 Extension processor transfer
0111l Vectored interrupt acknowledge 1111 Reserved

25

Pin Description

ADg-AD)5. Address/Data (inputs/outputs,
active High, 3-state). These multiplexed
address and data lines are used both for I/O
and to address memory.

KS. Address Strobe (output, active Low,
3-state). The rising edge of AS indicates
addresses are valid.

BUSACK. Bus Acknowledge (output, active
Low). A Low on this line indicates the CPU has
relinquished control of the bus.

BUSREQ. Bus Request (input, active Low).
This line must be driven Low to request the
bus from the CPU.

DS. Data Strobe (output, active Low, 3-state).
This line times the data in and out of the CPU.

MREQ. Memory Request (output, active Low,
3-state). A Low on this line indicates that the
address/data bus holds a memory address.

apg] 1 4[] ao,
ap, [2 47] SN,
a0, 3 46 [] sns
ADy, [4 45] ap,
ap 5 44 [] ap,
ans e 43[] ao,
svoe] 7 2] sN,
w[e 4117 Ao
Ay [o 40] Ao,
an, [10 39] ap,
vee [11 38 : AD,
Vi 7] sw,
Wil]13 ggpgy #Hano
seat[]+ seGcpu 35 [clock
nwi [1s u[]as
RESET [] 16 33 [] reservep
W [17 2[]sw
MREG [] 18 N [ING
os [19 0 Jrw
sty [20 20 [] susack
s, [21 28 [} wair
sty [22 27] susrea
st] 23 26 [sNo
SNy [] 24 25 [Jsn,

Figure 10. Z800! Pin Configuration

My, Mo. Multi-Micro In, Multi-Micro Out
(input and output, active Low). These two lines
form a resource-request daisy chain that allows
one CPU in a multi-microprocessor system to
access a shared resource.

NMI. Non-Maskable Interrupt (edge triggered,
input, active Low). A high-to-low transition on
NMI requests a non-maskable interrupt. The
NMI interrupt has the highest priority of the
three types of interrupts.

NVI. Non-Vectored Interrupt (input, active
Low). A Low on this line requests a non-
vectored interrupt.

CLK. System Clock (input). CLK is a 5V
single-phase time-base input.

RESET. Reset (input, active Low). A Low on
this line resets the CPU.

R/W. Read/Write (output, Low = Write,
3-state). R/W indicates that the CPU is reading
from or writing to memory or I/O.

an, [1 4[] an,
an, [2 39 [] an,
a0, [] 3 38 [] a0,
AD: [4 37 [] Aoe
ans[] s 38 [an,
stor[] e 35[] aos
w7 34 [] o,
A, [] 8 aa[] a;
a9 zgogz 32[d A0
vec[J 0 cpu 31 [] anp
vild 30 [J cLock
Nvi (] 12 2] As
Nwi[] 13 28 [] RESERVED
RESET [] 27] eW
W[s 28] NS
MREG [] 16 25 AW
¥ m R 24 |] BUSACK
st] 18 23 [] WAIT
st [19 22[] BUSREQ
st] 2 21] $To

Figure 11. Z8002 Pin Configuration

26

Pin Description (Continued)

SNo-SNg. Segment Number (outputs, active

High, 3-state). These lines provide the 7-bit

segment number used to address one of 128

segments by the Z8010 Memory Management
Unit. Qutput by the Z8001 only.

SEGT. Segment Trap (input, active Low). The
Memory Management Unit interrupts the CPU
with a Low on this line when the MMU detects
a segmentation trap.

STp-ST3. Status (outputs, active High, 3-state).
These lines specify the CPU status (see table).

STOP. Stop (input, active Low). This input can
be used to single-step instruction execution.

V1. Vectored Interrupt (input, active Low). A
Low on this line requests a vectored interrupt.

WAIT. Wait (input, active Low). This line indi-
cates to the CPU that the memory or I/O
device is not ready for data transfer.

B/W. Byte/Word (output, Low = Word,
3-state). This signal defines the type of memory
reference on the 16-bit address/data bus.

N/S. Normal/System Mode (output, Low =
System Mode, 3-state). N/S indicates the CPU
is in the normal or system mode.

Reserved. Do not connect.

28000 CPU Timing

The Z8000 CPU executes instructions by
stepping through sequences of basic machine
cycles, such as memory read or write, /O
device read or write, interrupt acknowledge,
and internal execution. Each of these basic
cycles requires three to ten clock cycles to
execute. Instructions that require more clock
cycles to execute are broken up into several
machine cycles. Thus no machine cycle is
longer than ten clock cycles and fast response
to a Bus Request is gquaranteed.

The instruction opcode is fetched by a
normal memory read operation. A memory
refresh cycle can be inserted just after the
completion of any first instruction fetch (IF})
cycle and can also be inserted while the
following instructions are being executed:
MULT, MULTL, DIV, DIVL, HALT, all Shift

instructions, all Block Move instructions, and
the Multi-Micro Request instruction (MREQ).

The following timing diagrams show the
relative timing relationships of all CPU signals
during each of the basic operations. When a
machine cycle requires additional clock cycles
for CPU internal operation, one to five clock
cycles are added. Memory and /O read and
write, as well as interrupt acknowledge cycles,
can be extended by activating the WAIT input.
For exact timing information, refer to the com-
posite timing diagram.

Note that the WAIT input is not synchronized
in the Z8000 and that the setup and hold times
for WAIT relative to the clock must be met. If
asynchronous WAIT signals are generated,
they must be synchronized with the CPU clock
before entering the Z8000.

Memory Read and Write

Memory read and instruction fetch cycles
are identical, except for the status information
on the STp~ST3 outputs. During a memory
read cycle, a 16-bit address is placed on the
ADg-ADj5 outputs early in the first clock
period, as shown in Figure 12. (In the Z8001,
the 7-bit segment number is output on
SNg-SNg one clock period earlier than the

16-bit address offset to compensate for the
delay in the memory management circuitry.)
A valid address is indicated by the rising
edge of Address Strobe. Status and mode
information become valid early in the memory
access cycle and remain stable throughout.
The state of the WAIT input is sampled in the

middle of the second clock cycle by the falling

27

Memory Read and Write (Continued)

edge of Clock. If WAIT is Low, an additional

clock pericd is added between T; and Tj.

WAIT is sampled again in the middle of this
wait cycle, and additional wait states can be

inserted. This allows interfacing slow

memories. No control outputs change during

wait states.

CLOCK

T

T2

Although Z8000 memory is word organized,
memory is addressed as bytes. All instructions
are word-aligned, using even addresses.
Within a 16-bit word, the most significant byte
(Dg~D;5) is addressed by the low-order address
(Ag = Low), and the least significant byte
(Do~D9) is addressed by the high-order

address (Ag = High).

Ty

STATUSES
(BIW, NIS,
STo-STy)

t«a— INSERTS WAIT STATE

X

SEGMENT NUMBER

AD
READ

__/

O\
X

/

AD
WRITE

(=]
WRITE

XIIEIORV ADDRESS|

DATA OUT

alig

B

h

/]

Figure 12. Memory Read and Write Timing

28

Input/Output

I/O timing is similar to memory read/write
timing, except that one wait state is automat-

ically inserted between T, and T3 (Figure 13).

Both the segmented Z8001 and the non-
segmented Z8002 use 16-bit [/O addresses.

T T2 Twa T
| INSERT WAIT STATE
STATUSES -
(BIW, STo-ST2)
NS
Low
= —_/
HIGH
WREG
AD K
INPUT PORT ADDRESS * - ——— - DATA IN
J
DS
INPUT
RIW
INPUT
outhy X PORT ADDRESS DATA OUT x
DS
OouTPUT
RIW
ouTPUT
Figure 13. Input/Output Timing

29

Interrupt and Segment Trap Request and
Acknowledge

The Z8000 CPU recognizes three interrupt
inputs (non-maskable, vectored and non-
vectored) and a segmentation trap input. Any
High-to-Low transition on the NMI input is
asynchronously edge detected and sets the
internal NMI latch. The VI, NVI and
SEGT inputs as well as the state of the internal
NMI latch are sampled at the beginning of T3
in the last machine cycle of any instruction.

In response to an interrupt or trap, the sub-
sequent IF) cycle is exercised, but aborted.
The program counter is not updated, but the
system stack pointer is decremented.

The next machine cycle is the interrupt
acknowledge cycle. This cycle has five
automatic wait states, with additional wait

1 LAST MACHINE | INSTRUCTION |
CYCLE OF ANY FETCH IF,

states possible, as shown in Figure 14.

After the last wait state, the CPU reads the
information on ADg-AD;5 and stores it tem-
porarily, to be saved on the stack later in the
acknowledge sequence. This word identifies
the source of the interrupt or trap. For the
non-vectored and non-maskable interrupts, all
16 bits can represent peripheral device status
information. For the vectored interrupt, the
low byte is the jump vector, and the high byte
can be extra user status. For the segmentation
trap, the high byte is the Memory Management
Unit identifier and the Jow byte is undefined.

After the acknowledge cycle, the N/S output
indicates the automatic change to system
mode.

ACKNOWLEDGE | sTATUS
cveLE SAVING

INSTAUCTION ‘ (ABORTED) ’
| .

T 13 1

| esesassnes ’ i

WA

AUTOMATIC WAIT STATES

s

INTERNAL
L)

ACKNOWLEDGE

DO

/T

)

t Trap Req 4/ Kl

wledge Timing

Figure 14. Interrupt and Seg

30

Status Saving Sequence

The machine cycles following the interrupt
acknowledge or segmentation trap acknow-
ledge cycle push the old status information on
the system stack in the following order: the
16-bit program counter; the 7-bit segment
number (Z8001 only); the flag and control

word; and finally the interrupt/trap identifier.
Subsequent machine cycles fetch the new pro-
gram status from the program status area, and
then branch to the interrupt/trap service
routine.

Bus Request Acknowledge Timing

A Low on the BUSREQ input indicates to the
CPU that another device is requesting the
Address/Data and Control buses. The asyn-
chronous BUSREQ input is synchronized at the
beginning of any machine cycle (Figure 15). If
BUSREQ is Low, an internal synchronous
BUSREQ signal is generated, which-after com-
pletion of the current machine cycle-causes
the BUSACK output to go Low and all bus out-

puts to go into the high-impedance state. The
requesting device-typically a DMA-can then
control the bus.

When BUSREQ is released, it is synchron-
ized with the rising clock edge and the
BUSACK output goes High one clock period
later, indicating that the CPU will again take
control of the bus.

ANY M CYCLI
T 2 \ Tx

.

AvAILABL

T * T T,

4

swurs _\,
RN

BUsACK

™,
= \ / "~ v
\ w4
N
ke B
~
ap >
WREQ, DS, \ S
$T0-373, > SAME AS PREVIOUS CYCLE
BIW, KW, NS 4

Figure 15. Bus Request/Acknowledge Timing

31

Stop

The STOP input is sampled by the last falling refresh prescaler or its divide-by-four clock
clock edge immediately preceeding any IF| prescaler; rather, it double-increments the
cycle (Figure 16). If STOP is found Low, a refresh counter every three clock cycles.
stream of memory refresh cycles is inserted When STOP is found High again, the next
after T3, again sampling the STOP input on refresh cycle is completed, any remaining T
each falling clock edge in the middle of the T3 states of the IF; cycle are then executed and
states. This refresh operation does not use the the CPU continues its operation.

REFRESH REFRESH
L —< e o {0 =N — e -
- INSTRUCTION

T\ _/ \/
N
- ___ /N T __J/
T XX prm—— X
T\ / X—

MIGH

Figure 16. Stop Timing

32

Internal Operation

Certain extended instructions, such as
Multiply and Divide, and some special instruc-
tions need additional time for the execution of
internal operations. In these cases, the CPU
goes through a sequence of internal operation
machine cycles, each of which is three to eight
clock cycles long (Figure 17). This allows fast
response to Bus Request and Refresh Request,

T

because bus request or refresh cycles can be
inserted at the end of any internal machine
cycle.

Although the address outputs during T} are
undefined, Address Strobe is generated to
satisty the requirements of future Z-BUS com-
patible self-refresh dynamic memories.

woex | [

10375 X

INTERNAL OPERATION

N\
Ap X UNDEFINED ‘)- -
uREQ, O3, AW nieH
- UNDEFINED
(1] SAME AS PREVIOUS CYCLE

Figure 17. Internal Operation Timing

33

Memory Refresh

When the 6-bit prescaler in the refresh
counter has been decremented to zero, a
refresh cycle caansisting of three T-states is
started as soon as possible (that is, after the
next IF) cycle or Internal Operation cycle).

The 9-bit refresh counter value is put on the
low-order side of the address bus (ADg-ADg);
ADg-AD,5 are undefined (Figure 18). Since
the memory is word-organized, Ag is always
Low during refresh and the refresh counter is

always incremented by two, thus stepping
through 256 consecutive refresh addresses on
AD;-ADg. Unless disabled, the presettable
prescaler runs continuously and the delay in
starting a refresh cycle is therefore not
cumulative.

While the STOP input is Low, a continuous
stream of memory refresh cycles, each three
T-states long, is executed without using the
refresh prescaler.

cLock L
WA i e
To-8T, REFAESH

i

f

— !
Ap X ACFRESH ADDAERS D= -
(-]
nW, W.Ml SAME AS PREVIOUS CYCLE

Figure 18. Memory

Refresh Timing

34

Halt

A HALT instruction executes an unlimited
number of 3-cycle internal operations,
inter-spersed with memory refresh cycles
whenever requested. An interrupt, segmenta-
tion trap or reset are the only exits from a
HALT instruction.

The CPU samples the VI, NVI, NMI and
SEGT inputs at the beginning of every T3
cycle. If an input is found active during two
consecutive samples, the subsequent IF; cycle
is exercised, but aborted, and the normal
interrupt acknowledge cycle is started.

Reset

A Low on the RESET input causes the follow-
ing results within five clock cycles (Figure 19):

W ADg-AD)5 are 3-stated

® AS, DS, MREQ,
BUSACK and Mg are forced High

® STp-ST3 and SNg-SNg are forced Low
B Refresh is disabled
® R/W, B/W and N/S are not affected
When RESET has been High for three clock

periods, two consecutive memory read cycles
are executed in the system mode. In the Z8001,
the first cycle reads the flag and control word
from location 0002, the next reads the 7-bit
program counter segment number from loca-
tion 0004, the next reads the 16-bit PC offset
from location 0006, and the following IF; cycle
starts the program. In the Z8002, the first cycle
reads the flag and control word {rom location
0002, the next reads the PC from location 0004
and the following IF) cycle starts the program.

e, e W,

ALL WiGH

7037,

NI Ve

/

- _/

Figure 19. Reset Timing

35

Composite AC Timing Diagram

RESET
i
This cdoon;posne timing dia-
[gram s not show actual
vi, Nvi C timing sequences. Refer to
._@.’ [(50)1 this diagram only for the
detailed timing relationships
SEGT o - ¢ of individual edges. Use the
il as an
e e explanation of the various
W >i timing sequences.
Mo
Timing measurements are
sTOP made at the following
voltages.
High Low
WAIT Clock 4.0V o.8v
Output 2.0V 0.8v
Input 2.0v osv
Float OV +0.5V
BUSREQ
@~)l 'OREE ”
T
BUSACK . /
7 .
®
U
cLock \ \
N -~

Car
P

SHo-SHs

=
ADDRESS X + S - _$ ol

ADo-AD1s DATA IN

®|
DATA OUT O ?(
K®

NT

wREQ .

7

As G@H—] *@’/ ~(H| —| ‘*QD
W@ [t~

MEMORY READ
i) |

T~l\ Hoo | Lol]9
i

18,
@
0
n
@
3
MEMORY WRITE _/
== ®
oS [P

INPUT/IOUTPUT _/ b L ———
i

I

INTERRUPT _/ 7 — ‘R‘__
ACKNOWLEDGE R _%

STo-ST,,
READ/WRITE,
NORMALISYSTEM,
YTE/WORD !

)
A

36

AC Characteristics

28001/Z8002 Z8001A/Z8002A Z8001B/Z8002B
No. Symbol Parameter Min (ns) Max (ns) Min (ns) Max (ns) Min (ns) Max (ns)
1 TcC Clock Cycle Time 250 2000 165 2000 100 2000
2 TwCh Clock Width (High) 105 2000 70 2000 40
3 TwCl Clock Width (Low) 105 2000 70 2000 40
4 TIC Clock Fall Time 20 10 10
5—TrC Clock Rise Time 20 15 10—
6 TdC(SNv) Clock 1T to Segment Number
Valid (50 pf load) 130 110 70
7 TdC(SNn) Clock 1 to Segment Number Not
Valid 20 10 5
8 TdC (Bz) Clock 1 to Bus Float 65 55 40
9 TdC(A) Clock 1 to Address Valid 100 75 50
10—TdC(Az) Clock T to Address Float 65 55 40—
11 TdA(DR) Address Valid to Read Data Required
Valid 475* 305" 180*
12 TsDR(C) Read Data to Clock ! Setup Time 30 20 10
13 TdDS(A) DS 1 to Address Active 80* 45* 20*
14 TdC(DW) Clock T to Write Data Valid 100 75 50
15—ThDR(DS) Read Data to DS 1 Hold Time 0 0 0
16 TdDW(DS) Write Data Valid to DS 1 Delay 295* 195* 110*
17 TdA(WR) Address Valid to MREQ ! Delay (55)* (35)" 20% .
18 TdC(MR) Clock { to MREQ | Delay 80 70 40
19 TwMRh MREQ Width (High) 210* 135* 80*
20—TdMR(A)——— MREQ | to Address Not Active 70 35*% 20t
21 TdDW(DSW) Write Data Valid to DS ¢ (Write)
Delay 55* 35* 15*
22 TdMR(DR) MREQ ! to Read Data Required
Valid 375* 230 140"
23 TdC(MR) Clock { MREQ 1 Delay 80 60 45
24 TdC(ASf) Clock * to AS | Delay 80 60 40
25—TdA(AS)—— Address Valid to AS ' Delay 55* 35* 20*
26 TdC(ASr) Clock | to S 1 Delay 90 80 40
27 TdA(DR) &S * to Read Data Required Valid 360* 220* 140*
28 TdDS(AS) DS 1 to &S Delay 70* 35* 15*
29 TwAS “AS Width (Low) 85* 55* 30~
30—TdAS(A) —— AS 1 to Address Not Active Delay 70 45 20*
31 TdAz(DSR) Address Float to DS (Read) ! Delay 0 0 Q
32 TdAS(DSR) AS 110 DS (Read) | Delay 80* 55* 30*
33 TdDSR(DR) DS (Read) | to Read Data Required
Valid 205* 130" 70"
34 TdC(DSr) Clock | to DS * Delay 70 65 45
35—TdDS(DW)——DS 1 to Write Data Not Valid 75* 45* 25*
36 TdA(DSR) Address Valid to DS (Read) | Delay 180" 110" 65"
37 TdC(DSR) Clock 1 to DS (Read) | Delay 120 85 60
38 TwDSR DS (Read) Width (Low) 275* 185* 110*
39 TdC(DSW) Clock | to DS (Write) i Delay 95 80 60
40—TwDSW DS (Write) Width (Low) 185" —— 110" 75*
4] TdDSI(DR) DS (1/0) | to Read Data Required
Valid 330* 210* 120*
42 TdC(Dsh) Clock | to DS (I/O) Delay 120 90 60
43 TwDS DS (/O) Width (Low) 410* 255* 160*

* Clock cycle-table dependent. See table on next page.

37

AC Characteristics (Continued)

28001/28002 Z8001A/Z8002A Z8001B/Z8002B

No. Symbol Parameter Min (ns) Max (ns}) Min (ns) Max (ns) Min (ns) Max (ns)
44 TdAS(DSA) AS 110 DS (Acknowledge) | Delay 1065* 690* 410*
45 —TdC(DSA)——Clock T to DS (Acknowledge) | Delay 120 85 - 65—
46 TdDSA(DR) DS (Acknowledge) | to Read Data

Required Delay 455* 295+ 165*
47 TdC(S) Clock 1 to Status Valid Delay 110 85 60
48 TdS(AS) Status Valid to &S 1 Delay 50* 30* 10*
49 TsR(C) RESET to Clock * Setup Time 180 70 50
50 —ThR(C)————RESET to Clock " Hold Time 0 0 0
51 TwNMI "NMI Width (Low) 100 70 50
52 TsNMIC) NMT to Clock t Setup Time 140 70 50
53 TsVI(C) VI, NVTto Clock 1 Setup Time 110 50 40
54 ThVI(C) VI, NVT to Clock t Hold Time 20 20 10
55— TsSGT(C)——SEGT to Clock 1 Setup Time 70 55 40
56 ThSGT(C) ‘SEGT to Clock t Hold Time 0 0 0
57 TsMI(C) MT to Clock * Setup Time 180 140 80
58 ThMI(C) "MI to Clock * Hold Time 0 0 0
59 TdC(MD) Clock * to MO Delay 120 85 70
60— TsSTP(C)——— STOP to Clock + Setup Time 140 — 100 50
61 ThSTP(C) STOP to Clock | Hold Time 0 0 0
62 TsW(C) WAIT to Clock | Setup Time 50 30 20
63 ThW(C) WAIT to Clock + Hold Time 10 10 5
64 TsBRQ(C) "BUSREQ to Clock 1 Setup Time 90 80 60
65—ThBRQ(C) BUSREQ TO Clock * Hold Time 10 10 5
66 TdC(BAKr) Clock 1 to BUSACK 1 Delay 100 75 60
67 TdC(BAK{) Clock 1 to BUSACK | Delay 100 75 60
68 TwA Address Valid Width 150" 95* 50*
69 TdDS(S) DSt to STATUS Not Valid 80" 55* 30"

* Clock cycle-table dependent. See table on next page.

38

Clock-Cycle-Time-Dependent Characteristics

Z8001/Z8002 Z8001A/Z8002A Z8001B/Z8002B
Number Symbol Equation Equation Equation

11 TdA(DR) 2TcC + TwCh - 130 ns 2TcC + TwCh-95ns 2TcC + TwCh - 60 ns
13 TdDS(A) TwCl - 25 ns TWCI - 25 ns TwCl - 20 ns

16 TdDW(DS) TcC + TwCh - 60 ns TcC + TwCh - 40 ns TcC + TwCh - 30 ns
17 TdA(MR) TwCh - 50 ns TwCh - 35 ns TwCh - 20 ns

9 TwMRh TeC - 40 ns TcC - 30 ns TcC - 20 ns
20 TdMR(A) TwCl - 35 ns TwCl - 35 ns TwCl - 20 ns
21 TdDW(DSW) TwCh - 50 ns TwCh - 35 ns TwCh - 25 ns
22 TdMR(DR) 2TcC - 130 ns 2TcC - 100 ns 2TcC - 60 ns
25 TdA(AS) TwCh - 50 ns TwCh - 35 ns TwCh - 20 ns
27— TdAS(DR) 2TcC - 140 ns 2TcC - 110 ns 2TcC - 60 ns
28 TdDS(AS) TwCl - 35 ns TwCl - 35 ns TwCl - 25 ns
29 TwAS TwCh - 20 ns TwCh - 15 ns TwCh - 10 ns
30 TdAS(A) TwCl - 35 ns TwCl - 25 ns TwCl - 20 ns
32 TdAS(DSR) TwCl - 25 ns TwCl - 15 ns TwCl - 10 ns
33————— TdDSR(DR) TcC + TwCh - 150 ns TcC + TwCh - 105 ns TcC + TwCh - 70 ns
35 TdDS(DW) TwCl - 30 ns TwCl - 25 ns TwCl - 15 ns
36 TdA(DSR) TcC - 70 ns TeC - 55 ns TeC - 35 ns
38 TwDSR TcC + TwCh - 80 ns TeC + TwCh - 50 ns TcC + TwCh - 30 ns
40 TwDSW TeC - 65 ns TcC - 85 ns TcC - 25 ns
41— TdDSI(DR) 2TcC - 170 ns 2TcC - 120 ns 2TcC - 80 ns
43 TwDS 2TcC - 90 ns 2TcC - 75 ns 2TcC - 40 ns
44 TdAS(DSA) 4TcC + TwCl - 40 ns 4TcC + TwCl - 40 ns 4TcC + TwCl-30ns
46 TdDSA(DR) 2TcC + TwCh - 150 ns 2TcC + TwCh - 105 ns 2TcC + TwCh - 75 ns
48 TdS(AS) TwCh - 55 ns TwCh - 40 ns TwCh - 30 ns
68 TwA: TcC - 90 ns TcC - 70 ns—————TcC - 50 ns
69 TdDS(S) TwCl - 25 ns TwCl - 15 ns TwCl - 10 ns

39

Absolute Maximum Ratings

Voltages on all inputs and outputs

with respectto GND.......... -0.3Vto +7.0V
Operating Ambient

Temperature.................. 0°Cto +70°C
Storage Temperature. -65°Cto +150°C

Stresses greater than those listed under Absolute Maxi-
mum Ratings may cause permanent damage to the device.
This is a stress rating only; operation of the device at any
condition above those indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

Test Conditions

The characteristics below apply for the
following test conditions, unless otherwise
noted. All voltages are referenced to GND
(G V). Positive current flows into the refer-
enced pin. Available operating temperature
ranges are:

® 0°C to +70°C,
+475 V=V s +5.25V

W -40°C to +85°C,
+4.73 V< Vo< +5.25V

B -55°C to +125°C,
+45V=V, < +55V

The product number for each operating

temperature range may be found in the order-
ing information section.

FROM OUTPUT
UNDER TEST

umprI 20

All ac parameters assume a load capacitance of 100 pF max, ex-
cept for parameter 6 (50 pF max). Timing references between two
output signals assume a load difference of 50 pF max

DC Characteristics

Symbol Parameter Min Max Unit Condition

Vel Clock Input High Voltage Vee-0.4 Ve +0.3 v Driven by External Clock
Generator

Ver Clock Input Low Voltage -0.3 0.45 v Driven by External Clock
Generator

Vin Input High Voltage 2.0 Vee+0.3 v

ViH ReseT Input High Voltage on RESET 2.4 Veeto .3 \

pin

ViL Input Low Voltage -0.3 0.8 A

Vou Output High Voltage 2.4 \ Iog = -250 wA

VoL Output Low Voltage 0.4 \ IopL = +2.0mA

In Input Leakage +10 uA 04 Vy=< +24V

IIL sEGT Input Leakage on SEGT pin - 100 100 uA

Iop Output Leakage +10 WA 04 Viys +24V

Icc Vee Supply Current 300 mA

40

Ordering Information

Type Package Temp Clock Description
Z8001B1 Plastic 48 pin 0/ +70°C 728001 Segmented Central

B6 Plastic 48 pin -40/ +85°C Processing Unit
D1 Ceramic 48 pin 0/+170°C 4MHz
D2 Ceramic 48 pin -85/+125°C
D6 Ceramic 48 pin -40/+ 85°C

Z8001A Bl Plastic 48 pin 0/+70°C
B6 Plastic 48 pin -40/ +85°C
Dl Ceramic 48 pin 0/+170°C 6MH:z
Dé Ceramic 48 pin -40/ + 85°C

Z28001B Bl Plastic 48 pin 0/+70°C
B6 Plastic 48 pin -40/ +85°C
D1 Ceramic 48pin 0/ +70°C IOMH_Z
D6 Ceramic 48 pin -40/ +85°C

78002 Bl Plastic 40 pin 0/+70°C 78002 Central Processing Unit

B6 Plastic 40 pin -40/ +85°C
D1 Ceramic 40 pin 0/+70°C 4MHz
D2 Ceramic 40 pin -58/+ 125°C
D6 Ceramic 40 pin -40/ + 85°C

Z8002A Bl Plastic 40 pin 0/+70°C
B6 Plastic 40 pin -40/+85°C
DI Ceramic 40 pin 0/+70°C 6MHz
D6 Ceramic 40 pin -40/ +85°C

Z8002B Bl Plastic 40 pin 0/+70°C
B6 Plastic 40 pin -40/ +85°C
DI Ceramic 40 pin 0/+70°C 10MHz
D6 Ceramic 40 pin -40/ +85°C

41

Packages (dimensions in mm)

Plastic

28001

Plastic

28002

48 25
BAANANANANANAADARAANANANAA

1%.09

1384
157

RADIUS

YUVUVVUVVVVVVVVVVVVVVV\%J

$273
MAX

Ceramic
28001
g,
x| ;
o 025 1
045 102 254
e 5842] 15.24
onss
- 61.59m o
i
@,
d
'

. .
Ceramic
28002
3
&
045 iy 254
L 8% o)
— 51307 -
128 _
= - 3
> &
L1 o

14.00m2*

15.36m

f
L. 1524

Pogs-C

42

